
Innovative Applications of AI
Vol.1 Issue 4(2024)

— 47 —

Monitoring System Practices and Explorations in Heterogeneous AI
Platforms

Jinhua Wang1, Ruiyi Liao2*, Jianfang Luo3

1Guangzhou AIdynamic Technology Co., Ltd.,510000, China

2Guangdong Urban-rural Planning and Design Research Institute Technology GROUP CO. LTD.,
510000, China

3Guangzhou AIdynamic Technology Co., Ltd.,510000, China

Corresponding Email: liaory@139.com

https://doi.org/10.70695/shuysw13

Abstract

With the growth of AI's business scale in the vertical field, there is a concomitant increase in the number
of servers and related services. This escalation leads to a substantial surge in the volume of monitoring
data. In response to this scenario, this paper proposes modular architecture design for monitoring services.
This design enables comprehensive monitoring of devices, software, and networks, encompassing device
status monitoring, software operation quality control, and real-time monitoring of network links and
bandwidth. The objective is to meet the exigencies of handling the vast and diverse monitoring data. The
system is capable of collecting and displaying data in real-time, promptly detecting the health,
performance, and error conditions of systems or applications. It also supports user-defined rules for
monitoring alerts and provides a real-time view of trends. When the system or application experiences or
is about to experience a failure, the monitoring system must respond expeditiously and issue alerts,
thereby facilitating rapid problem resolution or preemptive prevention. By integrating AI task types,
platform resource utilization, and network quality analysis, global fine-grained scheduling and resource
elastic expansion can be achieved. These operations significantly improve resource utilization of
heterogeneous AI computing platforms, optimize task execution efficiency, and reduce operational costs.

Keywords Monitoring System; Heterogeneous AI Computing Power; Data Collection; Resource
Utilization; Fine-grained Scheduling

1 Introduction

In modern technological landscapes, monitoring systems are of paramount importance. They provide
real-time surveillance of system operational status and performance metrics, enabling the early detection
of potential faults and anomalies. This, in turn, facilitates system performance optimization, ensures
system security, and underpins data-driven decision-making. Supporting AI computing power includes
different types of computing devices, such as Graphics Processing Units (GPUs) and Tensor Processing
Units (TPUs), each with unique strengths and applicable scenarios. However, how to effectively manage
and schedule these heterogeneous computing power resources to maximize computing performance and
optimize service quality has become an important challenge. As a bridge connecting resource status
and scheduling strategy, monitoring system can monitor the usage of computing resources in real-
time and provide data support for fine scheduling. Heterogeneous AI computing power contains a variety
of different types of server resources, different computing devices need different drivers and
programming frameworks, and the allocation and scheduling of computing power tasks also need to take
into account the availability of computing resources, the priority of tasks and other factors. Consequently,
the scheduling of heterogeneous AI computing power demands real-time adaptability and the ability to be
dynamically adjusted based on actual tasks and resource occupation.



Innovative Applications of AI
Vol.1 Issue 4(2024)

— 48 —

2 Related Work3D Monitoring of Heterogeneous AI Platforms

The monitoring system is responsible for the 7x24-hour surveillance of devices, networks, and services
within the computing resource pool. It conducts dynamic adjustments of computing resources and task
scheduling and, in conjunction with a multi-level monitoring and alarm response system, achieves
platform-wide computing perception and monitoring. This ensures service stability and continuous high
performance. Based on the contents of references [1] -[5], a monitoring system can collect data on system
performance, such as response time, throughput, and resource utilization. Analyzing these data is helpful
for finding the performance bottlenecks of the platform and optimizing them to provide a better user
experience. Additionally, the monitoring system can detect and record potential security vulnerabilities,
attack behaviors, and abnormal activities. This aids in early detection and response to security threats, and
it is also helpful for ensuring that the system complies with regulatory and compliance requirements.
Serving as the foundational base and engine of heterogeneous computing platforms, the monitoring
system monitors the health and operations of the entire computing platform 24/7 (see Fig 1). By
continuously monitoring the states and anomalies of various devices, nodes, links, and services, it
leverages intelligent decision-making algorithms to support computing perception and fault tolerance.

Fig. 1.Monitoring service in AI platform

2.1 Device Monitoring

Equipment is the cornerstone of computing services. The primary objective of monitoring equipment is
to ensure its continuous normal operation, thereby providing adequate storage capacity and computing
power for computing services:

1.Monitor the status of hardware components such as network cards, network cables, hard disks, and
memory;

2.Monitor the running status of servers and switches, including process status, load, cpu usage,
memory usage, bandwidth, and packet loss rate.

2.2 Software Monitoring

Software serves as the direct carrier of the computing server. Monitoring software on the computing
platform goes beyond checking process vitality, also real-time monitoring software operational quality:

1.Software vitality monitoring to ensure software is operating normally;
2.Software log-level monitoring to uncover impending risks;
3.Service capability monitoring to anticipate insufficient capabilities and dynamically allocate

resources.

2.3 Network Monitoring

Networks are the lifeblood of computing platforms and a key focus of monitoring. This includes:
1 .Real-time monitoring of node-level network egress bandwidth for dynamic resource allocation;
2 .Monitoring node-level egress link conditions to promptly replace under performing nodes;
3 .Interface-level network quality monitoring to promptly identify and replace faulty links.



Innovative Applications of AI
Vol.1 Issue 4(2024)

— 49 —

3 Design and Implementation of Monitoring System

3.1 Modular Service Architecture Design

The monitoring system predicated on the Micro-service architecture typically comprises multiple
Micro-services, including data collection service, data processing service, data storage service,
monitoring indicator calculation service, alarm service, and visual display service. These Micro-services
interact through a lightweight communication mechanism to fulfill the monitoring task of the
heterogeneous computing platform.

Service function splitting
Monitoring system service functions can be split as follows:
(1) Edge Collection Terminals:The edge acquisition terminal is responsible for monitoring indicator

collection and alarm event judgment, and reports the original data and alarm events to the indicator
receiving gateway.

(2) Data Receiving Gateway: The data receiving gateway is responsible for receiving the indicators
and events reported by the edge, temporarily storing and forwarding them to the upstream central
component. Raw data is temporarily stored in a memory queue and periodically pulled by the metric
storage gateway. Alarm events are directly forwarded to the event center, while configuration information
is obtained from the configuration center and distributed to edge collection terminals.

(3) Event Center: The event center receives alarm events, filters, inhibits, or merges them, selects the
events that need to be alerted, submits them to the database for consumption by the alarm center, and
obtains the configuration information about the rules from the configuration center[6].

(4) Alerting Center: The alarm center consumes the data in the database queue, sends alarm
information according to the rules, and stores alarm events into the database for the monitoring platform
to query, and obtains alarm information from the configuration center.

(5) Metric Query Gateway: Index query gateway provides HTTP interface for users to query index
data, process external query requests and return results, and obtain the corresponding relationship
between the original data and the database from the configuration center.

Deployment mode and advantages
(1) The monitoring system employs multi-active data center deployment, distributing monitoring data

traffic and alert workloads across multiple data centers to reduce the risk of service interruption.
(2) When monitoring traffic spikes occur, rapid expansion of the data receiving gateway can be

achieved through containerization, enhancing the system's ability to cope with emergencies[7].
(3) The Micro-service modular design facilitates efficient system maintenance, with each service unit

facilitating bug fixes, new feature deployments, testing, reducing single-point risks, and improving
reliability, availability, and flexibility. After service decomposition, loose coupling is achieved.

Fig. 2.Monitoring Platform Deployment Architecture Diagram

3.2 Modular Service Architecture Design

For the collection of server indicators and business indicators, the monitoring system includes HTTP
mode, code plug-in script mode (where data is collected based on the periodic output of script results) and
read fixed directory and fixed data format file collection. As illustrated in the following figure:



Innovative Applications of AI
Vol.1 Issue 4(2024)

— 50 —

Fig. 3. Monitoring Metric Data Reporting and Collection Methods

Users can customize the alarm conditions and acquisition strategy according to the actual needs.
After the configuration of the monitoring platform, the monitoring bottom will update the alarm
strategy to the edge acquisition terminal regularly. When edge components receive reported
metrics, they judge whether they meet the alert strategy, generate alert events if true, notify users,
and send corresponding notifications for recovered strategies.

3.3 Network Quality Analysis of the Monitoring System

Full-link tracking
The monitoring system has developed full-link tracing, embedding points in the call chain

between each Micro-service to track the overall network link. A trace is added to each request at
the start, generating call chain segments through context propagation and submitted upon service
completion. Trace data is periodically reported to the message queue, consumed by corresponding
components, and stored in the database for query.

Fig. 4. Example of Full-Link Tracing

This diagram easily identifies system issues, such as an API request taking 2s, with HTTP and gRPC
calls contributing 500ms and 200ms respectively.

Basic Network Metrics Monitoring
The monitoring system monitors the buried points of network links based on the network performance

analysis tool (ping, curl, trace path), turning basic network data into monitoring metrics. These metrics,
including inbound/outbound bandwidth, packet transmission counts, packet loss, TCP transmission ratios,
and network connection counts, are reported real-time via scripts and configured for alerts.

Service Monitoring
Business-level monitoring: With the help of the powerful computing power of big data cluster, the

monitoring system monitors and analyzes the access logs of AI computing power business in real time,
and mines the abnormal fluctuations of the business in real-time from the perspectives of status code,
request number, access behavior, etc.

Content monitoring: According to the business scenario of computing power demand, real-time
monitoring of computing power needs content, and dynamic adjustment of computing power pool
resources to ensure sustainable services.

User monitoring: Through deep mining and learning, real-time mining of the service quality of each
channel, gradually screen out the characteristics of poor quality groups, and targeted to improve the
quality of service.

Service quality monitoring can effectively reduce the probability of failure and ensure that user access
will not be affected to the greatest extent. A public cloud platform analyzes the problems occurring in the
third and fourth quarters of 2023.



Innovative Applications of AI
Vol.1 Issue 4(2024)

— 51 —

With a perfect node monitoring mechanism, through the internal edge node network, equipment, and
link monitoring system, it can find system faults in the first time and automatically switch nodes to
reduce the probability of failure.

Fig. 5.Monitoring and Early Warning Effectively Reduces the Probability of Failure

4 Grained Scheduling Strategies for Platform

The design and implementation of an intelligent traffic scheduling system within a multi-IDC, CDN,
and cloud host environment, featuring a low-latency scheduling server and an intelligent core computing
module, is achieved by integrating with the service monitoring system. Through data monitoring and
analysis, edge device scheduling, computing resource load scheduling, load balancing, and dynamic
adjustment, it realizes the efficient utilization of computing resources, power consumption reduction, and
task execution acceleration.

4.1 Platform Scheduling Objectives

Improve resource utilization
Fully utilize the advantages of heterogeneous computing resources,including the computing power of

edge devices and central servers, to avoid idle resources. Reasonably allocate various computing power
resources (such as CPUs, GPUs, FPGAs, etc.) in different tasks to maximize overall resource utilization.

Improve task execution efficiency
Reduce the waiting time and execution time of tasks, and ensure that tasks with high real-time

requirements can be processed in time. Allocate resources rationally according to task priorities and needs
to improve the speed and quality of task execution.

Implement load balancing scheduling
Avoid overloading certain devices or nodes while others remain idle. Achieve balanced load

distribution between the edge AI computing power server and the central server to improve the stability
and reliability of the entire system.

Real-time scheduling for all platforms
Users submit custom models and deployment configurations to the console, which can monitor and

schedule globally according to real-time, and quickly respond to dynamic changes of tasks in the system
platform, changes in resource availability, and changes in network conditions. Flexible scheduling
capability to adapt to different workloads and environmental conditions.

4.2 Fine-Grained Scheduling Strategy Formulation

Computing Resource Load Scheduling
Select appropriate computing resources for scheduling, and prioritize assigning tasks to computing

resources with lower loads according to task types (such as deep learning, image processing, big data
analysis, etc.) and computing needs. When a new task arrives, query current platform resource loads and
allocate tasks to the least loaded resources. Balance task allocation based on task urgency and resource
load. When resources are abundant, allocate multiple tasks compactly to a few nodes to increase resource
utilization. In resource-constrained situations, distribute tasks across multiple nodes to avoid overloading
single nodes. Implement task queuing and priority management, ensuring high-priority tasks receive
resources first.



Innovative Applications of AI
Vol.1 Issue 4(2024)

— 52 —

Load balancing and dynamic scheduling
Continuously monitor resource load during task execution. For example, if the edge device's network

connection deteriorates or the load increases, migrate the executing tasks back to the central node or other
ed If a resource is overloaded while others are lightly loaded, migrate some tasks from the overloaded
resource to the lightly loaded ones. Simultaneously, implement cross-layer scheduling between edge
devices and the central cloud, flexibly migrating tasks between the edge layer and the cloud based on task
requirements and network status. For edge devices, adjust task assignment in real-time according to their
dynamically changing load and connection status.ge devices. For example, if the edge device's network
connection deteriorates or the load increases, the tasks being performed can be migrated back to the
central node or other edge devices. Dynamically adjust the scale of computing resources based on
changes in the workload, monitoring system performance metrics such as adding or removing servers and
adjusting VM configurations to handle sudden computing demands.

Edge device scheduling and elastic expansion
Prioritize processing simple or high real-time tasks on edge devices to reduce data transmission delays

and bandwidth consumption. Reserve computing resources for critical or high real-time tasks, ensuring
timely processing. Use these reserved resources for other tasks when not needed, but quickly reclaim
them when required.Expand or contract compute resources dynamically depending on the load of the
platform and task requirements. During peak periods, increase computing power by launching more VMs
or containers. During off-peak periods, release excess resources to save costs. Adjust edge device
computing resource allocations based on load to ensure efficient task execution.

5 Use Cases

5.1 E-commerce Promotion Scenarios

During large-scale promotions on e-commerce platforms, the system needs to handle a large number of
concurrent requests and complex computing tasks. Using the monitoring system based on micro-services
architecture, the status of heterogeneous AI computing power resources can be monitored in realtime, and
resource allocation strategies can be dynamically adjusted according to the load. For instance, during
peak hours, the system can automatically augment the proportion of GPU resources allocated to expedite
the execution of tasks such as image processing. Conversely, during off-peak hours, resources can be
released for other services to enhance resource utilization.

5.2 Automatic Driving Scenarios

Autonomous driving systems have dynamically changing computing demands, especially in complex
driving scenarios. By monitoring the real-time data of the system, the platform can find potential fault
nodes in time, and give corresponding processing suggestions or automatically isolate the fault server.
Low latency is one of the key requirements of Autopilot. The platform must respond quickly to changes
in the surrounding environment, which requires the platform to have efficient data transmission
capabilities and low latency characteristics, and to process and make decisions quickly and locally.
Therefore, the platform needs to be able to support data exchange and communication between different
computing tasks. As well as collaboration between different service modules to ensure the overall
performance of the Autopilot system. Using heterogeneous AI computing power monitoring and
scheduling, a large amount of sensor data collected by autonomous vehicles is processed and analyzed in
realtime to achieve accurate driving perception and decision-making capabilities.



Innovative Applications of AI
Vol.1 Issue 4(2024)

— 53 —

Fig. 6. Cost Reduction and User Experience Enhancement After Migrating an Automotive Enterprise's Autonomous
Driving Capabilities to an Edge Computing Power Platform

6 Conclusion and Prospects

By real-time monitoring the operational status of heterogeneous AI computing power, we can provide
data support and decision-making grounds for meticulous scheduling, This, in turn, augments the
utilization efficiency of heterogeneous AI computing power, optimizes task scheduling strategies, and
enhances system reliability and stability. In the future, with the continuous development of technology,
the monitoring system is set to become even more intelligent and automated,proffering more accurate and
efficient solutions for the scheduling of heterogeneous AI computing power resources. Additionally, we
will persist in delving into the optimization of scheduling algorithms and strategies to further elevate the
utilization efficiency of heterogeneous AI computing power resources and the overall service quality.

Conflicts of Interest

The authors declare no conflicts of interest.

References

1. Virtaitech. Software Defined AI Computing power Cloud Scheduling. Solution [J].CSDN. 2024,8-06
2. Zhengke Zhu. Prometheus Cloud Native Monitoring: Operation and development practice.[M]. Beijing: China

Machine Press,2020.
3. James Turnbull. The Art of Surveillance: A surveillance Framework in the Cloud Native Age.[M]. Beijing: Posts

and Telecommunications Press,2020.
4. Mike Julian. Monitoring operation and maintenance practice: Principles and strategies.[M]. Beijing: Posts and

Telecommunications Press,2020.
5. VAN BON, JAN.ITIL Foundation: ITIL management practices.[M].VAN
6. HAREN PUBLISHING,2019.
7. Kai Zhu. Principle Analysis and Application Practice of ClickHouse.[M]. Beijing: China Machine Press,2020.
8. Guangke Wu. Actual Operation and Maintenance of Linux Enterprise [M].Beijing: Tsinghua University

Press,2018.


	Abstract
	1Introduction 
	2Related Work3D Monitoring of Heterogeneous AI Plat
	2.1Device Monitoring
	2.2Software Monitoring
	2.3Network Monitoring

	3Design and Implementation of Monitoring System
	3.1Modular Service Architecture Design
	3.2Modular Service Architecture Design
	3.3Network Quality Analysis of the Monitoring System

	4Grained Scheduling Strategies for Platform
	4.1Platform Scheduling Objectives
	4.2Fine-Grained Scheduling Strategy Formulation

	5Use Cases
	5.1E-commerce Promotion Scenarios
	5.2Automatic Driving Scenarios

	6Conclusion and Prospects
	Conflicts of Interest 
	The authors declare no conflicts of interest. 
	References

