
Innovative Applications of AI
Vol.1 Issue 4(2024)

— 34 —

Research on Adversarial Attack Algorithm Based on AI Recognition

Si Zhang1*

1National Engineering Laboratory for Big Data System Computing Technology, Shenzhen
University, 518000, China

Corresponding Email: zhangsi@szu.edu.cn

https://doi.org/10.70695/prtypb17

Abstract

Deep learning-based artificial intelligence algorithms are widely used in critical areas such as autonomous
driving and medical diagnosis. However, the lack of interpretability of deep neural networks results in
unpredictable prediction outcomes, posing significant security threats to AI applications and deployments.
Adversarial examples, specially designed to introduce imperceptible perturbations, cause neural network
models to produce confused and erroneous predictions. Therefore, it is crucial to explore both adversarial
example generation and attack algorithms to understand the security of deep neural networks and enhance
the interpretability of deep learning models. Existing adversarial example generation algorithms for image
recognition still face issues such as low generation efficiency, poor sample quality, and unstable
transferability during adversarial attacks. This study proposes HDSAttack, a transferable adversarial
attack algorithm that maps low-dimensional dense information to high-dimensional sparse information,
thereby enhancing transferability. To address the problem of unstable transferability in existing
adversarial attacks, this paper suggests mapping samples from a low-dimensional dense input space to a
high-dimensional latent space to expand the search space and obtain more effective information.
Additionally, KL divergence is used to enforce sparsity constraints throughout the training process,
yielding linearly separable high-dimensional sparse information for efficient information search. Further,
an ensemble attack on multiple target networks is conducted to enable the search network to learn more
about neural network structures, improving the transferability of adversarial examples. Experimental
results show that, compared to traditional hourglass autoencoder structures, the proposed search network
structure enhances the transfer attack success rate by 10.39%.
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1 Introduction

As a crucial component of new infrastructure, Advanced AI computing capabilities, represented by AI
computing centers, have become a pivotal foundation for the development of the digital economy [1].
Throughout the entire lifecycle of a model, different stages present corresponding security risks. Although
various measures can partially mitigate these risks, internal algorithmic imperfections and unresolved
issues, particularly the lack of interpretability in deep learning algorithms, continue to hinder further
development [2].

In recent years, adversarial examples have become a hot research topic, with some progress made in
adversarial attack research focused on image AI recognition. Szegedy et al. experimentally discovered
that the units in the final layer of neural networks form a solid basis for extracting semantic information
[3]. Goodfellow et al. further investigated the nature and properties of adversarial examples, attributing
the vulnerability of deep neural networks to the model's local linear characteristics, and found that
adversarial examples exhibit unstable transferability across different target classifiers [4].

However, adversarial example generation methods that involve iteratively modifying inputs to achieve
maximum classification loss require extensive iterative updates to the samples themselves, resulting in
each adversarial example needing a considerable amount of generation time [5]. When faced with the
need to produce adversarial examples in bulk, these iterative methods can lead to significant time
consumption. Due to their flexibility and mappability, Generative Adversarial Networks (GANs) have
been effectively applied to rapidly generate adversarial examples. Xiao et al. proposed using AdvGAN to
generate adversarial examples, where the generator maps the original input samples to adversarial
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perturbations, and the discriminator determines whether the image with the added adversarial
perturbations is an adversarial example [6].

This study proposes HDSAttack, a transferable adversarial attack algorithm based on high-dimensional
sparse mapping. By optimizing the search network structure, this method achieves adversarial examples
with better transferability, thus enhancing the transferability of adversarial attacks. Unlike traditional
hourglass-shaped (i.e., dimensionality reduction followed by dimensionality expansion) autoencoder
structures, this chapter introduces a high-dimensional mapping search network that first maps input
information to a high-dimensional space. By utilizing KL divergence to optimize the loss function, this
model performs constrained updates during the gradient descent process based on neuronal relationships,
enhancing search efficiency and ultimately yielding sparse information with more logical relationships.
The adversarial examples generated through this process exhibit stronger transferability, offering
potential for further research in black-box adversarial attacks.

2 Methodology

The study proposes to abandon the traditional downsampling design in the feature extraction process,
instead directly expanding the dimensionality of input images within shallow neural networks. This
approach enlarges the search space for adversarial perturbation information, allowing for the acquisition
of more effective information and thereby enhancing the transferability of adversarial examples, which
facilitates the implementation of black-box attacks. To further improve transferability, a composite loss
function is designed, consisting of the loss functions required for each attack process against multiple
target networks. Consequently, the search network updates its parameters based on feedback from
multiple networks, enabling the search for adversarial perturbation distributions that incorporate
information from multiple attacked networks.

KL divergence is a commonly used method for measuring the difference between two probability
distributions. For a given dataset X that follows two probability distributions, P and

Q:
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Adding KL divergence as a penalty term to the loss function can achieve sparsity limitation. Given
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Where M represents the number of samples in the dataset, and m represents the index number of
each sample. The sparsity parameter  is a custom parameter, which is a value close to 0 (taken as

0.05 in the implementation process of this project). In loss function, the average activation value
ˆ j is

expected to approach  to achieve sparsity limitation. Therefore, a penalty term based on KL

divergence is added to the loss function to penalize cases where the difference between
ˆ j and  is too

large, ensuring that the average activation value of hidden neurons is limited to a smaller range. KL

divergence is used to measure the difference between
ˆ j and  :
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When
ˆ j 

, divergence value of KL (
ˆ ||j 

) is 0, gradually increase as difference between 

and
ˆ j increases. Therefore, minimizing the penalty term KL can produce the effect of bringing

ˆ j closer
to  , in order to achieve sparsity limitation on neural networks. Sparsity limitation is beneficial for the
sparse representation of input information in high-dimensional space. More specifically, it can activate
effective neurons and avoid the impact of redundant information on gradient feedback. As shown in
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Figure 1, the bold red circles and lines represent the redundant neurons that are suppressed under the
sparsity constraint, while the remaining sparse effective neurons work normally, which is beneficial for
more effective model training or search processes.

Fig. 1. KL divergence loss achieves sparsity limitation

Two transferability exploration experiments were conducted, comparing the adversarial samples
generated by the CCL-Adv method before high-dimensional sparse mapping with those generated by the
HDSAttack algorithm after high-dimensional sparse mapping, in terms of their transferability during
adversarial attacks. In the comparison of model settings, the search network structure before high-
dimensional sparse mapping utilized an implicit space feature search network, whereas the search
network structure after high-dimensional sparse mapping employed a high-dimensional mapping search
network.

The transferability of the universal adversarial samples was tested on the four target classifiers and
extended to other classifiers, including AlexNet, DenseNet, ResNet-152, and ResNet-34. Additionally,
the transferability of the generated universal adversarial samples was compared with that of FGSM and
PGD. In the black-box attack comparison experiments, FGSM and PGD adversarial samples were first
generated through white-box attacks on ResNet-50 and then used for subsequent black-box attacks.

The experimental environment of this paper is shown in Table 1.

Table 1. HDSAttack algorithm experimental environment

Environmental type Parameters

Hardware environment GPU: NVIDIA GeForce RTX 2080Ti
CPU: Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70GHz

Software environment Pytorch, Opencv, PIL, Numpy
Language Python 3.6
Objection ResNet-50, VGG-16, GoogleNet, MobileNet-v2

Comparison algorithm FGSM, PGD
Dataset ImageNet-1000

3 Results

Tables 2 and 3 respectively present the transferability test results of adversarial samples generated by
the CCL-Adv method before and by the HDSAttack algorithm after high-dimensional sparse mapping.
The phrase "does not significantly demonstrate" is awkward; consider revising to: "A comparison
between the two tables reveals that the high-dimensional sparse mapping structure does not significantly
enhance white-box attack performance on the diagonal, with the average white-box attack success rate
across the four target networks increasing from 96.36% to 97.99%. However, the black-box attack
success rates in the off-diagonal regions do reflect the advantages of the high-dimensional sparse
mapping structure proposed by the HDSAttack algorithm, with the overall average black-box attack
success rate improving from 53.96% to 64.35%. This indicates better transferability of adversarial attacks.
Although the high-dimensional sparse mapping structure enhances adversarial attack transferability to
some extent, the overall transfer attack success rate still exhibits instability related to the similarity
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between the source model and target model structures. Therefore, based on the research work in this
chapter, an ensemble attack across multiple target models is introduced to generate universal adversarial
samples, further improving the transferability of adversarial attack algorithms.

Table 2.Migration between models before high-dimensional sparse mapping (represented by attack success rate (%))

migrate MobileNet-v2 ResNet-50 VGG-16 GoogleNet
MobileNet-v2 97.22 42.58 44.39 10.76
ResNet-50 59.08 96.54 81.25 80.96
VGG-16 62.33 45.72 93.18 24.89
GoogleNet 61.08 57.57 76.97 98.52

Table 3.Migration between models after high-dimensional sparse mapping (represented by attack success rate (%))

migrate MobileNet-v2 ResNet-50 VGG-16 GoogleNet
MobileNet-v2 99.44 50.07 58.29 17.09
ResNet-50 80.53 98.13 93.57 82.05
VGG-16 77.45 49.00 98.31 33.62
GoogleNet 71.29 72.10 87.22 96.06

Further explore the attack capability and transfer performance of general adversarial samples obtained
from integrated attacks on multiple target networks. Not only did we compare the performance of the
general adversarial samples obtained from high-dimensional sparse mapping before and after ensemble
attacks, but we also compared them with classical adversarial attack algorithms FGSM and PGD.

The results in Tables 4-5 indicate that the universal adversarial samples generated by the proposed
algorithm exhibit higher and more stable transferability between models. Since universal adversarial
samples are generated by attacking all four networks simultaneously, these samples contain generalized
information relevant to the structures of the four models. As a result, the adversarial features are more
likely to include generalized structural information applicable to other models and thus are more easily
transferable to models sharing this common structural information. Experimental results show that while
the transfer success rate of universal adversarial samples before high-dimensional sparse mapping is still
lower than that of samples after high-dimensional sparse mapping, it still demonstrates some
improvement in transferability compared to single-target attacks. Moreover, universal adversarial samples
after high-dimensional sparse mapping achieve an attack success rate of no less than 95% on white-box
attacks against the four target classifiers and a success rate of no less than 75% on black-box attacks
against other models with similar structures.

This study also compares the proposed algorithm with classic white-box attack algorithms FGSM and
PGD in terms of transferability. Table 4 presents the white-box attack success rates of FGSM and PGD
on the four target networks for single-target attacks, while Table 5 shows the black-box attack success
rates of these two algorithms on the same networks. The results indicate that PGD achieves the highest
attack success rate for white-box attacks across the four target models. However, universal adversarial
samples, which contain structural information from all four target networks, lead to reduced specificity
for each network, resulting in relatively weaker white-box attack success rates compared to PGD. On the
other hand, the black-box attack success rates presented in Table 5 demonstrate the superior
transferability of universal adversarial samples. Thus, this chapter adopts the concept of ensemble attacks
and shows that algorithms searching for networks trained on multiple target networks simultaneously can
effectively enhance adversarial attack transferability. Further analysis of the transferability comparison
between FGSM and PGD reveals that adversarial attack algorithms with stronger white-box attack
success rates tend to exhibit weaker transferability. This observation is consistent with the phenomenon
where universal adversarial samples show relatively weaker specificity for individual target models but
stronger transferability.
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Table 4. Generic adversarial sample transferability for white box attack (represented by attack success rate (%))

White box
adversarial attack

MobileNet-v2 ResNet-50 VGG-16 GoogleNet

Before high-
dimensional

sparse mapping
94.29 96.01 96.97 94.98

After high-
dimensional

sparse mapping
96.22 96.66 97.33 95.44

FGSM (Single
Target) 70.82 71.52 68.36 70.69

PGD (Single
Target) 98.64 99.27 99.8 98.12

Table 5. Generic adversarial sample transferability for black box attack (represented by attack success rate (%))

Black box
adversarial attack AlexNet DenseNet ResNet-152 ResNet-34

Before high-
dimensional

sparse mapping
67.35 79.88 74.66 72.95

After high-
dimensional

sparse mapping
75.74 87.48 80.90 89.31

FGSM 22.56 35.29 20.20 43.86
PGD 15.32 21.67 12.04 25.54

4 Conclusion

The HDSAttack algorithm proposed here enhances the transferability of adversarial samples by
mapping input data to a high-dimensional space via high-dimensional mapping search networks. This
expansion of the adversarial distribution search space exposes more effective information, improving the
transferability of adversarial samples during the attack process. To address the issue of reduced search
efficiency due to the enlarged search space, the algorithm employs KL divergence as a medium to impose
sparsity constraints during training, thereby obtaining high-dimensional sparse information and
identifying effective connections within the vast neural network structure to enhance search efficiency.
Furthermore, this chapter describes using the search network to simultaneously obtain feedback from
multiple target models, guiding the entire search process and uncovering adversarial perturbation
distributions enriched with structural information from various models. Adversarial samples generated
from these universal adversarial perturbation distributions demonstrate improved and more stable
transferability.
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