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Abstract
Against the backdrop of educational digitalization, traditional cloud-based learning situation analysis
faces challenges such as insufficient real-time performance, data privacy risks, and difficulties in cross-
domain adaptation. This study proposes a three-level algorithm system and constructs a collaborative
architecture consisting of edge preprocessing, federated optimization, and transfer adaptation.The edge
layer realizes lightweight feature extraction of multimodal data; the federated layer adopts the FedProx
algorithm combined with differential privacy and homomorphic encryption to ensure the security of
cross-school collaboration; the transfer layer uses domain adversarial training and knowledge graph
reinforcement learning to achieve cross-domain feature alignment and personalized learning path
generation. Experiments show that the algorithm achieves low-latency inference on the edge side,
effectively improves the accuracy of cross-domain recommendations, and reduces privacy risks,
providing a practical technical solution for educational intelligence.

Keywords Edge Computing; Real-time Analysis of Learning Situation; Personalized Learning Path;

Federated Transfer Learning

1 Introduction

Against the backdrop of educational digital transformation, the traditional cloud-based learning
analytics model faces challenges such as real-time performance, data privacy, and cross-domain
adaptation [1]. In existing research, the application of edge computing in educational scenarios lacks a
multimodal lightweight processing framework [2]; federated learning struggles to address the issue of
cross-domain feature shift caused by the non-independent and non-identically distributed nature of
educational data [3]; and transfer learning fails to effectively bridge the multimodal semantic gap in
educational data [4]. Due to the technical fragmentation of these three approaches, existing solutions
cannot simultaneously meet the requirements for real-time response, privacy protection, and cross-
domain accuracy [5].To this end, this study proposes an edge-federated-transfer three-level collaborative
architecture. The edge layer employs lightweight models to achieve low-latency feature extraction [6];
the federated layer combines algorithms and privacy protection technologies to ensure the security of
cross-school collaboration [7]; and the transfer layer utilizes domain adversarial training and
reinforcement learning to generate personalized paths [8]. Theoretically, this expands the collaborative
theoretical framework of educational AI [9]; in practice, it provides a compliant technical pathway for
cross-school resource integration, which is of great significance to promoting the implementation of
educational digitalization [10].

2 Related Theories and Technologies

2.1 Edge Computing Architecture and Its Applications in Education

Edge computing adopts a three-level deployment of terminal devices, edge servers, and the cloud
[11]. Terminal devices collect learning data and upload it to edge servers. Edge nodes perform real-time
analysis through local processing using lightweight models [6], while the cloud is responsible for long-
term trend optimization, thus forming a closed-loop collaboration [1]. This architecture breaks through
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the bottleneck of cloud processing delay and provides support for real-time learning situation analysis
[12].

In educational scenarios, edge computing enables real-time processing of multimodal data and
localized management of resources [2]. Terminal devices collect multimodal data such as text and video,
and edge servers deploy algorithm models for local processing [13]; through distributed caching, high-
frequency teaching resources are stored in edge nodes, and combined with content distribution
mechanisms, loading efficiency is improved and cloud dependence is reduced [14].

2.2 Federated Learning and Its Applications in Education

Federated transfer learning integrates federated learning and transfer learning to address the issue of
cross-domain collaboration for distributed heterogeneous data [4]. Each edge node conducts local model
training and achieves knowledge transfer from the source domain to the target domain through feature
distribution alignment [3]. By combining the data immobility feature of federated learning with privacy
protection technologies, it breaks through the cross-domain limitations of traditional federated learning
[10], making it suitable for cross-school and cross-major learning situation analysis in the education
field [15].

Federated learning enables cross-school distributed training through algorithms. Educational
institutions only upload updated values of model parameters, and data security is ensured by combining
differential privacy and homomorphic encryption [16]. It is applicable to the joint construction of
learning situation models, breaking data silos and complying with privacy regulations [17]. Transfer
learning measures domain differences and aligns features using domain adversarial training [8]. By
combining knowledge graphs and reinforcement learning for knowledge transfer, it alleviates the
problem of small-sample adaptation and improves the accuracy of cross-domain learning situation
analysis [18].

2.3 Real-Time Analysis of Learning Situation and Generation of Personalized Paths

This technology focuses on the processing of multimodal data in the learning process, enabling real-
time learning situation diagnosis and path planning [19]. Multimodal data refers to datasets that integrate
heterogeneous information such as text, video, and time series. Through the processing of lightweight
models on edge servers, the system can accurately identify students' knowledge gaps and cognitive
styles [13].A knowledge graph is a semantic network composed of knowledge points, relationships, and
resources. Based on the knowledge graph, the system constructs a disciplinary knowledge network, and
combines reinforcement learning to dynamically generate learning paths adapted to students' individual
characteristics [8], thus forming a real-time closed loop of data collection, diagnosis, and
recommendation [9].

3 Algorithm Design and System Architecture

3.1 Overall System Architecture Design

The architecture is divided into three levels: edge preprocessing, federated optimization, and transfer
adaptation [20]. The edge layer processes multimodal learning data and achieves rapid response through
lightweight models [6]; the federated layer trains and aggregates model parameters in cross-school
collaboration to ensure the security of data collaboration [21]; the transfer layer analyzes data
differences in different scenarios, aligns features, and generates personalized learning paths to address
the issue of cross-domain adaptation [18]. Details are shown in Figure 1.
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Fig. 1. Overall architecture design diagram of the system

3.2 Edge Layer: Real-Time Learning Situation Feature Extraction Algorithm

As the front-end of the entire system architecture, the edge layer is mainly responsible for real-time
feature extraction of multimodal learning data, providing high-quality feature inputs for subsequent
federated optimization and transfer adaptation. Its core design goal is to minimize computational
complexity and latency while ensuring the accuracy of feature extraction, so as to meet the requirements
of real-time learning situation analysis [21].

Multimodal Data Preprocessing Layer
Text Data Processing
The BERT-whitening technique is used to perform semantic compression on texts such as

programming code and study notes, generating low-dimensional dense feature vectors. This retains core
semantic information while reducing computational overhead [22]. The core formulas and algorithms
are as follows:

①BERT feature extraction formula:

h=BERT(x)∈Rd (d=768) (1)

The input text x is transformed into 768-dimensional semantic vector h using a pre-trained BERT
model, capturing deep semantic relationships within the text. Here, x represents text sequences such as
programming code and learning notes, and d denotes the feature dimension (the BERT-base model
outputs 768 dimensions by default).

②Whitening transformation formula:

z=Λ-1/2UT(h-μ) μ= 1
n i=1

n h�
i

(2)

After mean-subtracting the BERT features, dimensionality reduction is performed using eigenvalue
decomposition matrices and eigenvector matrix U, compressing dimensions while retaining core
semantics. Here, μ is the feature mean vector of the training set; Σ=UΛUT represent the
eigendecomposition of the covariance matrix, where Λ is the diagonal matrix of eigenvalues and U is the
orthogonal matrix of eigenvectors. The top k=128 dimensions are retained, achieving a compression
ratio of 80%.

Video Data Processing
The YOLOv8 lightweight detection algorithm is used to extract keyframe action features from

experimental operation videos, enabling rapid recognition of operation steps and object interaction
behaviors. The core formulas and algorithms are as follows:

①Keyframe detection formula:

framei= argmaxj IoU (objj,template) IoU(A,B)=
|A∩B|
|A∪B|

(3)

Key frames framei containing critical actions are filtered by calculating the Intersection over Union
(IoU) IoU between the detected target objj in video frames and the preset operation template.
Here,IoU(A,B) measures the region overlap; template is a predefined critical region for experimental
operations.

②Feature Encoding Formula:

fv=CNNYOLOv8(framei)∈R256 (4)
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A lightweight YOLOv8 convolutional neural network is used to extract 256-dimensional feature
vectors fv from key frames, capturing operational actions and object interaction patterns.
Here, CNNYOLOv8 represents the YOLOv8 backbone network, which adopts C2f modules and RepBlock
structures with a parameter count of less than 1M; the output feature dimension is 256, balancing both
accuracy and real-time performance (FPS > 100).

Temporal Data Processing
A sliding window convolution module is employed to analyze temporal data such as question-

answering trajectories and learning durations, capturing patterns and regularities in time-series data [23].
The core formula algorithm is as follows:

①Window Partitioning Formula:

Xt=[xt-w+1,xt,…,xt]∈Rw×c (5)

The temporal data, such as question-answering trajectories and learning durations, are partitioned into
windows of size w, generating a matrix d containing w time steps and c feature dimensions.
Here, w denotes the window size (e.g., w=10 represents a 10-minute time window), and c denotes the
feature dimension (e.g., question accuracy rate, mouse click frequency, etc.).

②Convolution Operation Formula:

ft=σ(W*Xt+b)∈R1×d (6)

Feature extraction is performed on the temporal window(Xt) using a convolution kernel W, followed
by an activation function σ to generate a d-dimensional temporal feature vector ft . Here, W is the
convolution kernel weight matrix of size k×c (where k is the temporal stride of the kernel); * denotes the
convolution operation; b is the bias term; σ represents the ReLU activation function; and d is the output
feature dimension.

Feature Fusion and Optimization Layer
Multimodal Feature Fusion
An attention mechanism is introduced to construct a modal weight matrix, which dynamically adjusts

the importance of text, video, and temporal features and suppresses the interference of noise information
[24]. The core formula algorithm is as follows:

①Weight Calculation Formula:

αi=
exp ( qTki)

j exp (� qTkj)
(7)

The modal importance weights αi are computed via the dot product between the query vector q and
the key vector ki of each modality, enabling noise suppression and key information enhancement.
Here, q is the global query vector generated by pooling multimodal features; ki represents the key vector
of the i-th modality (e.g., text h , video fv , temporal ft ); weights sum to 1, with higher αi indicating
greater modality relevance to the current task.

②Weighted Fusion Formula:

ffusion= iαi� vi (8)

The modality value vectors vi are aggregated according to the attention weights αi to generate the
fused feature ffusion . Here, vi is a feature vector of the same dimension as ki (typically vi=ki ); the fused
feature retains complementary information from each modality while maintaining the same dimension as
individual modalities.

Real-Time Inference Optimization
Through model lightweighting techniques and parallel computing optimization, the overall inference

latency is controlled within 50ms, meeting the real-time response requirements for classroom
interactions [25]. The core formula algorithm is as follows:

①8-Bit Quantization Formula:

Wint8=round(
Wfp32

S
) S=

max ( |Wfp32|)

127
(9)

The 32-bit floating-point parameter Wfp32 is normalized by a scaling factor S and rounded to an 8-bit
integer parameter Wint8 to reduce computational complexity. Here, S ensuring the quantized values
remain within [-128, 127]. The quantized model achieves 4x size compression, 75% reduction in
computation, and inference latency ≤50ms.
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3.3 Federated Layer: Cross-School Learning Situation Collaborative Optimization Algorithm

The federated layer is the core module for realizing collaborative training of cross-school learning
situation data. Its main task is to collaboratively optimize the global model while protecting the data
privacy of all participants. This process improves the model's generalization ability and adaptability [26-
28].

Federated Learning Framework Design
Hybrid Algorithm Architecture
A combination of the FedProx framework and the FedAvg algorithm is adopted. When local models

are trained on edge nodes, a proximal term is introduced into the loss function to constrain parameter
deviations between local models and global models. This addresses the non-IID (Independent and
Identically Distributed) issue in educational data and improves cross-school convergence efficiency [29].
The core formula algorithm is as follows:

①Local Loss Function Formula:

Li=Ltask(θi)+
λ
2
‖θi-θt‖2 term =λ

2
‖θi-θt‖2 (10)

On the basis of the task loss Ltask , proximal term is introduced to constrain the deviation between
local model parameters θi and global parameters θt , mitigating the Non-IID (Non-Independent and
Identically Distributed) issue in educational data. Here, λ=0.1 is the proximal term weight controlling
the degree of deviation from the global model, and ‖⋅‖2 is the L2 norm measuring the distance in
parameter space [30].

②Global Aggregation Formula:

θt+1= i
ni
N

� θi* (11)

The trained parameters θi* are weighted and aggregated according to the local sample size ni of each
node to generate new global parameters θt+1 , enabling model movement while keeping data stationary.
Here, N= i ni� is the total number of samples across all nodes; weighted aggregation ensures nodes with
more samples have a greater impact on the global model, improving convergence efficiency [28].

Distributed Training Mechanism
The distributed training employs a secure collaborative mode where only model parameter updates

are uploaded from edge nodes to the central server via TLS 1.3 encrypted transmission. The server
aggregates these updates weighted by sample size, compressing communication volume to 10% of
original parameters using homomorphic encryption, Top-K sparsification (retaining 20% significant
gradients), and 16-bit quantization. Model deviations are constrained via the FedProx
framework （ λ=0.1） , while differential privacy （ ε=1.5） and IQR anomaly detection [34][35]
prevent privacy leakage and malicious attacks [31].

Privacy-Preserving Technology Integration
Differential Privacy Enhancement
Laplacian noise (scale parameter ε=1.5) is injected into gradients before being uploaded to ensure that

adding/removing a single student's data does not affect model updates, meeting privacy protection
requirements [32].The core formula algorithm is as follows:

①Gradient Noise Injection Formula:

∇L�=∇L+ ‖∇L‖1
ε
Lap(0,1) (12)

Laplacian noise is injected into the original gradient ∇L to ensure that adding or removing a single
student's data does not affect model updates, meeting differential privacy requirements. Here, ε=1.5 is
the privacy budget (smaller values indicate stronger privacy protection); Lap(0,1) is Laplacian noise
with mean 0 and scale parameter 1; ‖∇L‖1 is the L1 norm of the gradient, measuring sensitivity [33].

Homomorphic Encryption Application
The uploaded model parameters are homomorphically encrypted to support parameter aggregation

computations in the ciphertext state, ensuring data usability without disclosure [34]. The core formula
algorithm is as follows:

①Parameter Encryption Formula:

E(θi)+E(θj)=E(θi+θj) (13)

Leveraging additive homomorphic encryption properties, parameter aggregation is supported in the
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ciphertext state to ensure data usability without disclosure. Here, E(⋅) is the homomorphic encryption
function; the result of ciphertext aggregation is equivalent to plaintext aggregation, i.e., decrypting the
result yields θi+θj [35].

Communication and Efficiency Optimization
Gradient Compression Strategy
A combination of Top-K sparsification (retaining the top 20% significant gradients) and 16-bit

quantization is employed to reduce communication data volume by 85%, adapting to bandwidth
constraints in educational scenarios [26]. The core formula algorithm is as follows:

①Important Gradient Selection Formula:

I=argsort(|g|)[-K:] (K=0.2m)) (14)

gsparse=
gi, i∈I
0, otherwise

Gradients are sorted by absolute value, retaining the top 20% significant gradients (index set I) and
zeroing the rest to reduce communication volume. Here, g is the original gradient vector of
dimension m; K=0.2m is the number of retained gradients, resulting in only 20% of parameters being
transmitted after compression [36].

②16-Bit Quantization Formula:

gquant=round(gsparse×215) (15)

The sparsified gradients are multiplied by scaling factor 215 and rounded to 16-bit integers to further
reduce transmission bandwidth requirements. Each quantized gradient ranges from [-32768, 32767];
combined with Top-K sparsification, total communication volume is reduced by 85%, adapting to
campus network bandwidth constraints [31].

Training Time Control
In a 100Mbps network environment, the model update time is controlled within 13.1 seconds through

optimized aggregation cycles and parallel computing, improving efficiency by 52% compared to
traditional federated learning.

3.4 Migration Layer: Cross-Domain Learning Situation Adaptation and Path Generation
Algorithm

The primary function of the migration layer is to address data distribution discrepancies across
different educational domains, enabling accurate cross-domain learning situation adaptation. Based on
the adaptation results, personalized learning paths are generated to meet the diverse needs of students
[37].

Cross-Domain Feature Alignment Mechanism
Domain Difference Measurement
The Maximum Mean Discrepancy (MMD) is used to calculate the distribution difference between

source and target domain data, with a threshold of 0.8 as the trigger condition for feature alignment [38].
The core formula algorithm is as follows:

①Distribution Distance Calculation Formula:

MMD2(S,T)=‖ 1
ns i ϕ� (xis)-

1
nt j ϕ� (xjt)‖H2 ϕ(x)= exp ( - ‖x-x'‖

2

2σ2
) (16)

Data from the source domain S and target domain T are mapped to Reproducing Kernel Hilbert Space
(RKHS) via a kernel mapping function ϕ and the distance between mean vectors is calculated to quantify
the distribution difference between domains [39]. Here, ns,nt represents the number of samples in the
source and target domains; ϕ is the Gaussian kernel mapping ϕ(x) , with σ as the kernel width; the
domain adaptation mechanism is triggered when MMD2>0.8.

Domain Adversarial Training
An adversarial network consisting of a discriminator and a feature extractor is constructed. Through a

gradient reversal layer (λ=1.0), the model is forced to learn domain-invariant features, reducing cross-
domain data distribution discrepancies and addressing model adaptation challenges caused by Non-IID
(Non-Independent and Identically Distributed) data [40]. The core formula algorithm is as follows:

①Adversarial Objective Function Formula:
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min
F

max
D

Ladv=Exs[ logD (F(xs))]+Ext[ log ( 1-D(F(xt)))] (17)

The domain discriminator D is trained to distinguish features from the source and target domains,
while the feature extractor F is forced via a gradient reversal layer to learn domain-invariant features,
minimizing cross-domain distribution divergence [41]. Here, F maps inputs to a feature space, D is a
binary classifier outputting the probability of a feature belonging to the source domain, and the gradient

reversal layer parameter update rule is ∂Ladv
∂F

=-λ ∂Ladv
∂F

(λ=1.0).

Personalized Path Generation Framework
Knowledge Graph Support
A knowledge point association network is constructed based on a subject knowledge graph containing

over 1,200 knowledge points and 3,500+ relational edges. The core layer abstracts knowledge points as
graph nodes and constructs directed edges through 12 relationship types to form a knowledge
dependency framework. The reasoning layer uses the TransE algorithm to map nodes to a 200-
dimensional vector space for semantic similarity calculations to support cross-domain migration during
path planning. The application layer implements knowledge tracing based on the graph, dynamically
updating students' 128-dimensional knowledge point mastery vectors through question-answering
records, and generates the shortest learning path in combination with reinforcement learning algorithms
[42].

Reinforcement Learning Inference
A Deep Q-Network (DQN) algorithm is employed, using the student's knowledge point mastery

vector (128 dimensions) as the state space, a learning resource set (over 300 items) as the action space,
and a reward function that integrates recommendation accuracy (weight 0.6), learning efficiency (weight
0.3), and difficulty adaptability (weight 0.1) to dynamically generate the optimal learning path [43]. The
core formula algorithm is as follows:

①State Space Definition:

s=[k1,k2,…,k128] ki∈[0,1] (18)

The student's knowledge point mastery is represented as a 128-dimensional vector s, where ki denotes
the mastery level (ranging from 0 to 1) of the i-th knowledge point [44]. This covers over 1,200 subject
concepts, with c calculated based on data such as test accuracy and practice duration.

②Q-Value Iteration Formula:

Q(s,a)←Q(s,a)+α[r+γmax
a'

Q (s',a')-Q(s,a)] (19)

The state-action value function Q(s,a) is updated based on the Bellman equation, where the
immediate reward r integrates recommendation accuracy, learning efficiency, and difficulty adaptability
to guide the agent in generating the optimal learning path [43]. Here, α=0.01 is the learning rate
controlling the Q-value update step size, γ=0.9 is the discount factor balancing immediate and future
rewards, and the action space a includes over 300 learning resources (e.g., videos, exercises) [45].

③Reward Function Formula:

r=0.6racc+0.3reff+0.1rdiff (20)

The reward function is composed of three weighted components, ensuring that the recommended
resources are accurate, efficient, and matched to the student's proficiency level [46]. Here, racc represents
the resource recommendation accuracy; reff denotes learning efficiency; rdiff stands for difficulty
adaptability (the matching degree between resource difficulty and current mastery level, ranging from [-
1, 1]).

Cross-Domain Performance Optimization Strategy
Incremental Transfer Learning
For small-sample target domain scenarios, the approach of source domain pre-training and target

domain fine-tuning is adopted to reduce sample dependence in cross-domain migration and enhance the
model's generalization ability [47]. The core formula algorithm is as follows:

①Pre-training-Fine-tuning Mode Formula:

θ=θpretrain+ηΔθfinetune (21)
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The model parameters θpretrain are first pre-trained on the source domain, and then some
parameters Δθfinetune are fine-tuned on the target domain with a learning rate to reduce dependence on
small samples [48]. Here, η=0.001 is the fine-tuning learning rate, which avoids overfitting to a small
number of samples in the target domain; the parameters of the first L=2/3 network layers are frozen, and
only the top-level task-related parameters are updated.

Real-Time Inference Optimization
Through optimizing network structures and caching mechanisms, low latency and high accuracy in

path generation are achieved. The path generation latency is controlled within 65ms, and the cross-
domain recommendation accuracy reaches 81.2%, which is 10.6% higher than that of pure transfer
learning [49]. The core includes constructing lightweight networks and a three-level caching system,
combined with optimization strategies to improve cross-domain recommendation performance, meeting
the needs of real-time classroom interaction.

4 Experimental Design and Result Analysis

4.1 Experimental Environment

Hardware Environment: Edge nodes adopt NVIDIA Jetson AGX Orin (64GB memory, 128GB
storage). Cloud servers are configured with Intel Xeon Platinum 8368 (40 cores) and NVIDIA A100
(40GB video memory), with a network bandwidth of 100Mbps [50].

Software Environment: The edge layer is deployed with Ubuntu 20.04, equipped with PyTorch 1.12.1
and TensorRT 8.4; the federated layer uses the FedML framework; the migration layer is implemented
based on MMD and reinforcement learning with TensorFlow 2.8 [51].

4.2 Description of Experimental Datasets

Multimodal Dataset: Collected from 1,200 students majoring in computer-related fields across 3
universities [52], including:

Text data: 18,000 programming assignments (Python/Java) and 23,000 study notes, compressed to
128 dimensions using BERT-whitening;

Video data: 500 hours of experimental operation videos (1080p/30fps), with 256-dimensional action
features extracted using YOLOv8;

Temporal data: Answer trajectories, learning duration, etc., divided into 10×5 dimensional matrices
according to 10-minute windows.

Cross-Domain Dataset: The source domain is computer science majors (approximately 800 people),
and the target domain is network engineering majors (approximately 400 people). The Non-IID degree is
simulated using the Dirichlet distribution (α=0.5) [53].

4.3 Experimental Scheme and Comparison Algorithms

Experimental Scheme
Edge-Side Real-Time Performance Test: Deploy lightweight models on Jetson AGX Orin, inputs 100

groups of multimodal data, and records the end-to-end latency from data collection to feature output
[50].

Federated Collaboration Experiment: Simulate cross-university scenarios with 3 universities, train
100 rounds using FedProx and differential privacy (ε=1.5), and compare the convergence speed of the
global model and each local model.

Cross-Domain Migration Experiment: After pre-training on the source domain, conduct comparative
tests on the target domain with no migration, traditional transfer learning (MMD), and the proposed
algorithm migration, and calculate the recommendation accuracy [51].

Privacy Verification: Evaluate the privacy leakage risk before and after injecting Laplacian noise
(ε=1.5) through gradient inversion attack simulation [55], using a privacy risk scoring system (0-100
points, lower scores indicate higher security).

Setting of Comparison Algorithms
Baseline Algorithm 1: Cloud-based centralized learning (no edge layer, where raw data is uploaded to

the cloud for training).
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Baseline Algorithm 2: Pure federated learning (FedAvg + differential privacy, no migration layer)
[53].

Baseline Algorithm 3: Traditional transfer learning (MMD domain adversarial, no federated or edge
collaboration) [51].

Comparison Algorithm 4: Edge + federated architecture (no migration layer, only edge feature
extraction and federated training).

4.4 Setting of Evaluation Metrics

Real-Time Performance: Edge-side inference latency (ms), path generation latency (ms).
Accuracy: Cross-domain recommendation accuracy (%), F1-score for knowledge points mastery

prediction [54].
Privacy: Privacy risk score (lower is better), differential privacy compliance (ε value verification)

[53].
Efficiency: Federated communication volume (MB/round), model convergence rounds (rounds) [55].

4.5 Experimental Results and Analysis

Comparison of Real-Time Performance
A comparison of edge inference and path generation latencies across different algorithms verifies the

proposed algorithm's advantages in real-time performance, confirming its suitability for real-time
classroom interaction. Details are shown in Figure 2.

Fig. 2. Comparison of real-time performance indicators of various algorithms

Experimental Data Analysis:
The edge inference latency of this algorithm is 48ms, which is 85%, 29%, 13%, and 8% lower than

that of Baseline Algorithms 1-2, Baseline Algorithm 3, and Comparison Algorithm 4 respectively; the
path generation latency is 65ms, which is 69%, 29%, 17%, and 24% lower than that of Baseline
Algorithms 1-2, Baseline Algorithm 3, and Comparison Algorithm 4 respectively.This indicates that
through model lightweighting, caching mechanisms, and the collaboration of the three-level architecture,
the algorithm has significant advantages in real-time performance and can meet the needs of classroom
interaction.

Comparison of Accuracy
By comparing the cross-domain recommendation accuracy of different algorithms, as well as the F1-

scores of knowledge point prediction in both the source domain and target domain, the advantages of
this algorithm in terms of accuracy and its adaptability to cross-domain non-independent and identically
distributed (Non-IID) data are verified. Details are shown in Figure 3.
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Fig. 3. Comparison of accuracy indicators of various algorithms

Experimental Data Analysis:
For cross-domain recommendation accuracy: By leveraging MMD domain adversarial training on the

knowledge graph and reinforcement learning, the proposed algorithm achieves an accuracy of 81.2%.
This represents a 15% improvement over traditional transfer learning and a 24.3% improvement over
pure federated learning. The cloud-based algorithm achieves an in-domain accuracy of 83.5%, but its
accuracy drops to 58.7% in the target domain with small samples, verifying the proposed algorithm's
adaptability to cross-domain data.

For the F1-score of knowledge point prediction: In the target domain, the proposed algorithm reaches
0.79 (a 16.2% improvement over traditional transfer learning), and 0.85 in the source domain (close to
the cloud-based algorithm). This indicates that the three-level architecture performs well in cross-
domain scenarios without sacrificing learning effectiveness in the source domain.

Privacy Comparison
By comparing the privacy risk scores, differential privacy ε values, and gradient inversion success

rates of different algorithms, the effectiveness and compliance of the proposed algorithm in privacy
protection are verified, highlighting the technical advantages of the edge-federated-migration three-level
architecture in balancing data collaboration and privacy security. Details are shown in Figure 4.

Fig. 4. Comparison of privacy indicators for each algorithm

Experimental Data Analysis:
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The privacy risk score of the proposed algorithm is 13 points (out of 100), which is 81%, 48%, and
86% lower than that of Baseline Algorithm 1, Baseline Algorithm 2, and the scheme without privacy
protection, respectively. It adopts differential privacy with ε=1.5 and homomorphic encryption,
combined with gradient compression and abnormal update filtering, resulting in a gradient inversion
success rate of only 7.2%, which is significantly lower than that of all baseline schemes. Through the
triple mechanisms of federated learning parameter collaboration, differential privacy noise injection, and
homomorphic encryption for ciphertext computing, the algorithm realizes "data available but not
visible". Its privacy protection effect is superior to that of traditional schemes, providing a feasible path
for educational data security.

5 Experimental Design and Result Analysis

This study addresses the issues of poor real-time performance, data privacy risks, and difficulties in
cross-domain adaptation in the analysis of students' learning situation within the context of educational
digitalization.It proposed a three-level algorithm system integrating edge computing and federated
transfer learning. Through lightweight feature extraction at the edge layer, privacy-preserving
collaboration at the federated layer, and cross-domain adaptation at the transfer layer, this system
provides a technical solution for intelligent educational systems.Meanwhile, the study identifies
limitations in aspects such as cross-domain scenario coverage and multimodal data fusion. Future
development directions are outlined from the perspectives of technical optimization, application
expansion, and theoretical research [48][49].
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摘要：在教育數字化背景下，傳統基於雲端的學情分析存在實時性不足、數據隱私風險及跨域適

配困難等挑戰。本研究提出三級算法體系，構建包含邊緣預處理、聯邦優化與遷移適配的協同架

構：邊緣層實現多模態數據的輕量化特徵提取；聯邦層採用FedProx算法結合差分隱私與同態加

密確保跨校協作安全；遷移層通過域對抗訓練與知識圖譜強化學習實現跨域特徵對齊與個性化學

習路徑生成。實驗表明，該算法在邊緣端實現低延遲推斷，有效提升跨域推薦精度並降低隱私風

險，為教育智能化提供實用技術方案。
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