
Innovative Applications of AI
Vol.2 Issue 3(2025)

— 11 —

PSOX: Leveraging Historical and Global Optima to Enhance
Diversity and Speed in Genetic Algorithm Crossover

Xiaobo Jin1, Jiashu Tu2*

1Taizhou Vocational College of Science & Technology, Taizhou, 318000, China
2Taizhou First People's Hospital, Taizhou, 318000, China

* tujiashu1@126.com
https://doi.org/10.70695/IAAI202503A1

Abstract
This study introduces PSOX, a novel crossover operator for real-coded genetic algorithms, strategically
integrating particle swarm optimization (PSO) principles to revolutionize search efficiency. Unlike
conventional crossover methods limited to intra-generational information exchange, PSOX leverages
guidance from both the global best solution and historical optima across generations, enabling adaptive
exploration of promising search regions while preserving population diversity. Rigorous evaluations on
15 benchmark function (spanning unimodal, multimodal, and highly complex landscapes) demonstrate
that PSOX outperforms five state-of-the-art operators in solution accuracy, stability, and convergence
speed, particularly when paired with optimal mutation strategies. A detailed analysis of mutation rate
impacts provides actionable parameter-tuning insights for diverse optimization scenarios. By bridging
GA's evolutionary robustness with PSO's directional learning, PSOX offers a breakthrough for
accelerating convergence in complex problem domains.
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1 Introduction

In the recent years, most of real-life problems such as Vehicle Routing Problem (VRP), Job Shop
Scheduling (JSS) and Maximum Clique Problem(MCP) are NP-hard problems [1], which means those
problems can not be solved in exact polynomial-time. To enhance solution efficiency, advanced
metaheuristic frameworks such as particle swarm optimization (PSO) [2], Cover-Relax-Search (CRS)
[3] and ant colony optimization (ACO) [4] have been rigorously developed and empirically validated
across diverse application contexts.

Genetic algorithm (GA), a widely recognized metaheuristic approach derived from Darwinian
principles of natural selection and biological evolutionary mechanisms [5], has demonstrated significant
efficacy in solving complex optimization problems across diverse domains. In the genetic algorithm, a
single chromosome is used to represent a feasible solution, and a specific number of chromosomes are
utilized to model and conduct the exploration of the solution space of a given problem. The fitness value
serves as a crucial metric for quantitatively assessing the quality of candidate solutions. By simulating
the processes in nature, such as the selection of mates by organisms, crossover and exchange of
chromosomes, genetic mutation, and natural selection, the algorithm continuously optimizes the feasible
solutions. The earliest genetic algorithms (GAs) adopted binary string encoding for chromosomes, but
this approach suffers from issues such as low precision and high computational complexity. In contrast,
real-coding encoding is more suitable for most engineering problems. GAs that utilize real-coded
chromosomes are termed Real Coded GAs [6].

The crossover operator with the objective of evolving superior chromosomes serves as a fundamental
mechanism in GAs by facilitating information exchange between chromosomes to explore the search
space [6-7]. Based on the building-block hypothesis [8], the crossover operator is the preeminent
operator in GAs. According to this hypothesis, certain key genetic components contribute to the
emergence of highly fit individuals within the population. The crossover operation effectively allows
individuals to merge these essential genetic components, facilitating the creation of superior offspring.
Consequently, substantial research efforts have focused on devising sophisticated real-coded crossover
operators to improve the performance of Real-Coded GAs.
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This study introduces PSOX, an innovative crossover operator inspired from the Particle Swarm
Optimization(PSO) algorithm. We will compare the genetic algorithm using this operator with four other
mainstream operators. For equitable algorithm comparison, we evaluate both our proposed methods and
conventional generational GAs using 15 benchmark problems with diverse complexity levels. We
comprehensively analyze and compare the proposed operator from perspectives such as the solution
accuracy, stability and convergence speed of the problems. Moreover, through combinatorial
experiments with different mutation operators and mutation rates, we investigate the interaction between
our operator and different mutation operator.

The paper is structured as follows: Section 2 presents a literature review on real-coded operators,
Section 3 details the proposed PSOX crossover, Section 4 describes the experimental setup for all GAs,
Section 5 discusses the performance comparison of various GAs, and Section 6 provides concluding
remarks.

2 Related Work

Numerous crossover operators for real-coded GAs have been proposed in the literature, which can be
broadly categorized into two types according to the differences in the information content they
incorporate. One is to generate offspring by constructing linear equations of parental information, which
can be described by following equation:

O=
i

n

αi� vi (1)

The relative crossover operator is presented in Table 1. These crossover operators solely employ the
linear combination of parents to generate offspring. The exploration and convergence of the algorithm in
the solution space are achieved by controlling the values of parameters. The differences among these
crossover operators are mainly reflected in two aspects. One is the number of parents such as Simplex
crossover (SX) [14] is multi-parents when others are two-parents, and the other is the way of
determining the coefficient values like Laplace crossover uses Laplace distribution to generate
coefficient and Logistic crossover uses Logistic distribution [9]. However, the offspring produced by
these operators may not consistently evolve toward improved solutions due to the influence of low-
fitness individuals in the population. This will lead to a slower convergence speed of the algorithm.

Table 1. Crossover operator by linear combination

The other crossover operators incorporate additional spatial information to generate offspring, typical
related operators include PCX and UNDX, whose crossover formulas are presented in Table 2. Although
these operators perform outstandingly in some test problems, their high computational complexity leads
to low algorithm operation efficiency, making them unsuitable for problems with high timeliness
requirements.

Name of crossover operation Formula Parameter

LX[10] O=p1+(p2-p1)L L=μ+s⋅ ln
U
1-U

FX[11] O=uniform(min ( p1,p2),max ( p1,p2)) No parameter
AX[12] O=αp1+(1-α)p2 α∈(0,1)

BLX-α[13] O=uniform(p1-α(p2-p1),p2+α(p2-p1)) α∈(0,1)

SBX[9]
O1=0.5[(1+β)p1+(1-β)p2]
O2=0.5[(1-β)p1+(1+β)p2] β=

(2u)
1

ηc+1,if u≤0.5,

1
2(1-u)

1
ηc+1

,if u≥0.5

LX[6]
O1=p1+β|p1-p2|
O2=p2+β|p1-p2|

β= a-b loge ( u), if u≤0.5
a+b loge ( u), if u>0.5

SX[14] O=(1+ϵ) x1-
1
n

i=1

n

xi� ε≥0
n≥3
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Table 2. Crossover operator with additional spatial information

Name of crossover operation Formula Other spatial information

PCX[15]
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3 The Proposed PSO-Inspired Crossover Operator

PSO is inspired by the collective behavior of biological swarms (e.g., bird flocks, fish schools) in
adapting to environments, locating resources, and evading predators through information sharing.
Hassan et al. [17] have demonstrated through experiments that the convergence speed and computational
efficiency of the PSO algorithm are significantly higher than those of the genetic algorithm. However,
the mutation operator in the GA algorithm enables the algorithm to exhibit superior performance in
escaping from local optima [18].

Therefore, extensive research has focused on integrating PSO and GA algorithms. Most of these
hybrid approaches are based on the combination at the algorithm framework level. For example, the
hybrid PSO-GA algorithm proposed in [19-20] runs the PSO algorithm and the GA algorithm
independently in two stages. The results of the one algorithm are used as the initial population for the
another algorithm to perform further optimization. X.H. Shi et al. proposed a PSO-GA algorithm which
allows the two algorithms run independently, and then, under the set number of iterations, partial high-
quality populations are exchanged. R Huang et al. [21] use PSO as the main framework and the
population is divided into three groups during the iteration process, and applying GA-based crossover
and mutation operations to each group separately, and finally the update formula of PSO itself is
applied. Traditional crossover operators only allow individuals in the current generation to perform
crossover. The stochastic nature of selection may result in the inclusion of sub-optimal individuals. As a
result, crossover may disrupt elite genes, causing offspring fitness divergence and superior gene loss,
thereby impeding convergence. Inspired by the PSO algorithm, we proposes a novel PSO-Inspired
crossover operator named PSOX. It mimics the learning method of the PSO algorithm and enables a
more fine- grained integration of the PSO and GA algorithms, rather than a crude combination of
frameworks. This crossover enables individuals to incorporate information from both the global best
solution and other individuals' historical optima, so as to inherit excellent genes and accelerate the
convergence process. The offspring are given by the equations:

O=w⋅ pi+c1r1d(j)+c2r2d(g),

wℎerer1,r2∼
e−(x−μ)/s

s(1+e−(x−μ)/s)2
(2)

d� (j)=pjbest−pi,wℎerej≠i
d� (g)=pgbest−pi

(3)

Where �, �1, �2 constant terms, which respectively determine the extent to which the offspring learn
from themselves, the historical optimal solutions of other individuals, and the global historical optimal
solution. �� (�) represents learning direction from other historical- best individual and in order to gather
more diversity information, ������ is the one that is most different from the current individual among the
n(� = 8) candidate resources, and cosine similarity is employed for measurement. Different from the
setting in traditional crossover algorithms where both parents must come from the current generation,
the PSOX algorithm allows individuals to perform inter- generational crossover to inherit the optimal
genes of the global and other individuals. ������ denotes the global best solution of the current
population. Consequently, �� (�) represents the learning direction of an individual towards this optimal
solution. Meanwhile, random number �1, �2 sampled from the Logistic probability density function with
inare employed to prevent premature convergence to local optima.
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4 Experimental Setup

Three experiments were designed. Firstly, Experiment 1 (Section 4.1) evaluated the proposed
crossover operator against benchmark operators using 15 test functions to assess algorithmic accuracy
and stability. Secondly, Experiment 2 (section 4.2) focused on convergence speed comparison: four test
functions were selected from Experiment 1 results, on which PSOX performed relatively poorly while
other operators showed good performance, to analyze convergence speed under the context of small
population sizes. Thirdly, Experiment 3 (section 4.3) explored the effects of different mutation rates on
GAs equipped with PSOX.

4.1 Accuracy and Stability Test

To systematically evaluate the proposed algorithm's performance, fifteen 30-dimensional benchmark
functions were employed to compare the novel crossover operator against five existing operators. These
problems exhibit varying levels of difficulty and multi- modality characteristics. Meanwhile, to examine
the crossover algorithm's sensitivity to mutation operators, all crossover variants were paired with both
Gaussian mutation (GM) and non-uniform mutation(NUM) operators. The real-coded GA incorporating
the PSO-inspired crossover (PSOX) operator was simulated, with performance evaluated through mean
and standard deviation metrics.

Table 3 presents the uniform testing environment for all algorithms, with fixed parameter values
maintained throughout every run. The parameter configurations for comparative crossover operators
follow Table 4 specifications. All implementations utilize Python on a Windows platform with 2.9GHz
processor and 32GB RAM.

Table 3. Experimental parameter settings

No.of turns
No.of

generations
Population

No.of
Population
initial

Population
Select
operator

Crossover
rate

Mutation
operator

Mutation
rate

30 1000 300
Uniform
random

Tournament
with size=3

0.8 NUM 0.1

30 1000 300
Uniform
random

Tournament
with size=3

0.8 GM 0.1

Table 4. Parameter settings of the crossover operator

4.2 Convergence Speed Test

In Experiment 1, we only focused on the accuracy and stability of the results after a fixed number of
iterations, without examining the performance during testing process. In Experiment 2, we selected four
test functions (Test cases 4, 5, 7, 11) on which PSOX performs relatively poorly while other crossover
operators show good performance. Under the conditions of GM as the mutation operator, a population
size of 100, and 500 iterations, with all other settings remaining the same as in Experiment 1, thirty
independent trials were performed to assess both convergence speed and process stability of the
proposed algorithm.

4.3 Effects of Mutation Rate Test

The experimental results from both Experiment 1 and Experiment 2 confirm PSOX's robust
convergence characteristics and operational stability. However, considering that PSOX is inspired by the
PSO algorithm, it may inherit the drawback of being prone to getting trapped in local optimal solutions.
The mutation rate in genetic algorithms critically governs population diversity. By combining PSOX
with different mutation rates, under the experimental conditions of GM as the mutation operator, a

FX BLX-α SBX LX PSOX

Parameter1 � = �������(0,1) � = 0.5 eta = 2 a = 0 b = 0.5

Parameter2 - - - b = 0 �1 = 1.5, �2 = 1.5
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population size of 100, and 100 iterations, we conducted 30 independent experiments for each mutation
rate parameter to analyze the impact of the mutation rate on the genetic algorithm equipped with PSOX.

5 Results and Discussion

This section presents the analysis and summary of three experiments in Sections 6.1, 6.2, and 6.3,
offering a comprehensive evaluation of the proposed PSOX operator from multiple perspectives.

5.1 Performance Comparison of Different Crossover Operators

The performance evaluation proceeds in two stages: (1) comparative analysis of means and standard
deviations across all GAs to assess algorithmic performance and stability, followed by (2) application of
the Kruskal-Wallis H-test (� = 0.05) to detect significant inter-algorithm performance differences on
identical test functions. A significant Kruskal-Wallis H-test result ( + ) indicates performance
differences among algorithms, while a non-significant result ( ∼ ) suggests no statistical difference.

Performance Comparison of Different Operators Combined with the NUM Mutation Operator
Table 5 presents the mean ±SD of optimal objective values across generations for each test case, with

corresponding Dunnett test p-values in Table 6. Among the 15 test functions, the optimal values found
by PSOX are not significantly smaller only in 4 test cases (Cases 3, 4, 14, and 15). In the remaining test
cases, the optimal values obtained by PSOX are significantly smaller than those of other crossover
operators. Notably, in Test Cases 1, 8, 9, 10, 11 and 13, the average optimal values of the fitness
function found by PSOX are several orders of magnitude higher than those of other algorithms.
Meanwhile, by comparing the standard deviations, the results of PSOX are slightly larger in Cases 5, 14
and 15, while in other cases, this value is far smaller than that of other crossover operators.

Table 5.Mean and Std of objective function values and Kruskal-Wallis H-test for mean objective function values
for all GAs with NUM

Proble
m

number

FX-NUM BLX-α-NUM SBX-NUM LX-NUM PSOX-NUM Kruskal
-Wallis
H-test

Mean std Mean std Mean std Mean std Mean std

1 7.8E-01 9.2E-01 2.7E-03 2.0E-03
2.2E+0

0
7.5E-01 6.5E-01 9.4E-01 6.8E-16 9.0E-16 +

2 2.1E-05 1.5E-05 1.4E-06 1.4E-06 1.9E-06 1.5E-06 6.3E-07 7.1E-07 4.3E-07 3.1E-07 +

3 4.7E-01 2.9E-01 1.5E-01 2.4E-01 5.4E-01 2.6E-01 7.3E-02 1.5E-01
0.0E+0

0
0.0E+0

0
+

4 1.8E-01 7.2E-02 2.2E-01 1.7E-01 2.3E-01 2.0E-01 1.3E-01 1.1E-01 3.5E-01 8.3E-02 +

5 1.0E-01 5.3E-02 3.2E-02 3.1E-02 1.9E-01 9.9E-02 2.6E-02 3.6E-02 9.6E-01 4.9E-01 +

6
1.5E+0

1
4.0E+0

0
1.9E+0

1
3.7E+0

0
2.0E+0

1
4.1E+0

0
2.0E+0

1
4.7E+0

0
3.2E+0

0
8.8E+0

0
+

7
6.2E+0

1
3.3E+0

1
1.1E+0

2
1.4E+0

2
2.2E+0

2
3.4E+0

2
8.1E+0

1
1.3E+0

2
2.8E+0

1
1.5E-01 +

8
3.5E+0

1
1.8E+0

1
5.1E+0

1
1.4E+0

1
6.7E+0

1
1.4E+0

1
2.8E+0

1
8.4E+0

0
0.0E+0

0
0.0E+0

0
+

9 1.6E-04 1.0E-04 9.7E-07 8.6E-07 5.3E-04 3.5E-04 8.3E-07 5.4E-07
0.0E+0

0
0.0E+0

0
+

10 1.8E-03 1.2E-03 1.0E-05 8.7E-06 5.7E-03 2.5E-03 1.0E-05 7.4E-06
0.0E+0

0
0.0E+0

0
+

11
3.1E+0

0
7.9E-01

6.2E+0
0

2.0E+0
0

8.8E+0
0

2.5E+0
0

6.9E+0
0

2.0E+0
0

3.9E-
179

0.0E+0
0

+

12 9.1E-01 3.5E-01 3.1E-01 1.2E-01
1.1E+0

0
4.0E-01 4.8E-01 1.8E-01 1.1E-03 6.5E-04 +

13
3.5E+0

3
2.1E+0

3
1.4E+0

1
1.1E+0

1
1.1E+0

4
7.4E+0

3
1.5E+0

1
1.1E+0

1
0.0E+0

0
0.0E+0

0
+

14 1.7E-01 7.4E-02 1.6E-01 1.8E-01 2.5E-01 1.8E-01 1.2E-01 1.0E-01 3.4E-01 1.7E-01 +

15 1.0E-01 5.0E-02 2.8E-02 3.7E-02 1.5E-01 7.1E-02 1.8E-02 3.7E-02
1.1E+0

0
4.4E-01 +
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Table 6. P-value and result of Dunnett Test for all GAs with NUM

Problem
number

FX-NUM BLX-�-NUM SBX-NUM LX-NUM
Mean std Mean std Mean std Mean std

1 1.0000 + 0.8378 + 1.0000 + 1.0000 +
2 1.0000 + 0.9296 + 0.9555 + 0.8572 +
3 1.0000 + 1.0000 + 1.0000 + 0.9962 +
4 0.0000 ~ 0.0009 ~ 0.0037 ~ 0.0000 ~
5 0.0000 ~ 0.0000 ~ 0.0000 ~ 0.0000 ~
6 1.0000 + 1.0000 + 1.0000 + 1.0000 +
7 0.9739 + 0.9993 + 1.0000 + 0.9938 +
8 1.0000 + 1.0000 + 1.0000 + 1.0000 +
9 0.9999 + 0.8376 + 1.0000 + 0.8370 +
10 1.0000 + 0.8383 + 1.0000 + 0.8383 +
11 1.0000 + 1.0000 + 1.0000 + 1.0000 +
12 1.0000 + 1.0000 + 1.0000 + 1.0000 +
13 1.0000 + 0.8364 + 1.0000 + 0.8365 +
14 0.0000 ~ 0.0000 ~ 0.0268 ~ 0.0000 ~
15 0.0000 ~ 0.0000 ~ 0.0000 ~ 0.0000 ~

Performance Comparison of Different Operators Combined with the GM Mutation Operator
Based on the observations from Tables 7 and 8, Test Case 2 exhibits consistent performance across

all crossover operators. For Test Case 2, all GAs find same solution and Kruskal-Wallis H-test result
shows negative. For Test Case 15, the PSOX operator performs worse than AX, FX and BLX-� in all
remaining test.

Table 7.Mean and Std of objective function values and Kruskal-Wallis H-test for mean objective function values
for all GAs with GM

Problem

number

FX-GM BLX-�-GM SBX-GM LX-GM PSOX-GM Kruskal-

Wallis H-

test
Mean std Mean std Mean std Mean std Mean std

1 7.7E+00 1.2E+00 1.2E+01 2.3E+00 1.8E+01 4.1E-01 1.8E+01 1.0E+00 6.8E-16 9.0E-16 +

2 3.1E-07 0.0E+00 3.1E-07 0.0E+00 3.1E-07 0.0E+00 3.1E-07 0.0E+00 3.1E-07 0.0E+00 ~

3 1.2E+01 4.6E+00 3.7E+01 2.7E+01 2.2E+02 7.3E+01 2.0E+00 3.2E+00 0.0E+00 0.0E+00 +

4 1.0E-02 3.2E-02 4.4E-01 7.7E-01 1.1E+00 8.9E-01 3.8E-01 5.0E-01 5.4E-05 2.0E-05 +

5 8.6E-04 2.8E-03 2.1E-02 7.8E-02 4.6E-01 8.2E-01 2.5E-01 5.6E-01 9.6E-02 1.3E-01 +

6 4.9E+01 1.5E+01 1.2E+02 3.6E+01 1.7E+02 2.8E+01 1.7E+02 2.8E+01 8.8E+00 1.6E+01 +

7 1.3E+02 1.5E+02 2.2E+04 9.3E+04 3.7E+05 4.1E+05 2.8E+02 4.2E+02 2.8E+01 1.8E-01 +

8 1.4E+00 1.8E+00 1.5E+00 1.1E+00 3.4E+00 2.3E+00 8.7E-01 6.5E-01 3.6E-23 0.0E+00 +

9 7.0E-05 2.2E-05 1.1E-04 3.7E-05 2.9E-04 8.6E-05 1.6E-04 5.0E-05 1.6E-23 0.0E+00 +

10 1.3E-03 5.7E-04 2.1E-03 7.6E-04 4.8E-03 1.5E-03 2.3E-03 1.0E-03 3.0E-23 0.0E+00 +

11 1.9E+01 4.0E+00 6.4E+01 7.7E+00 6.5E+01 5.8E+00 6.6E+01 6.1E+00 1.4E-11
7.8E-

119
+

12 2.3E+00 8.1E-01 9.2E-01 4.8E-01 6.8E+00 2.2E+00 7.6E-01 2.4E-01 1.7E-03 9.4E-04 +

13 8.4E+02 3.3E+02 1.3E+03 4.1E+02 7.4E+03 3.3E+03 1.7E+03 5.0E+02 8.8E-22 0.0E+00 +

14 1.4E-02 4.5E-02 3.3E-01 4.4E-01 1.2E+00 9.4E-01 3.3E-01 4.5E-01 5.8E-05 4.7E-05 +

15 7.6E-04 2.8E-03 6.0E-02 2.0E-01 3.8E-01 5.2E-01 3.7E-01 7.3E-01 1.8E-01 3.6E-01 +
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Table 8. p-value and result of Dunnett Test for all GAs with GM

Problem
number

FX-GM BLX-GM SBX-GM LX-GM
Mean std Mean std Mean std Mean std

1 1.0000 + 1.0000 + 1.0000 + 1.0000 +
2 - - - - - - - -
3 0.9959 + 1.0000 + 1.0000 + 0.8959 +
4 0.8551 + 1.0000 + 1.0000 + 1.0000 +
5 0.4643 + 0.5530 + 1.0000 + 0.9964 +
6 1.0000 + 1.0000 + 1.0000 + 1.0000 +
7 0.8340 + 0.9403 + 1.0000 + 0.8350 +
8 1.0000 + 1.0000 + 1.0000 + 1.0000 +
9 1.0000 + 1.0000 + 1.0000 + 1.0000 +
10 1.0000 + 1.0000 + 1.0000 + 1.0000 +
11 1.0000 + 1.0000 + 1.0000 + 1.0000 +
12 1.0000 + 1.0000 + 1.0000 + 1.0000 +
13 0.9999 + 1.0000 + 1.0000 + 1.0000 +
14 0.8655 + 1.0000 + 1.0000 + 1.0000 +
15 0.0152 ~ 0.0352 ~ 0.9995 + 0.9992 +

5.2 Analysis of the Convergence Speed

For the test, the Laplace crossover (LX) operator and the Arithmetic crossover (AX) operator were
selected as reference objects for comparison with the proposed PSOX operator. The comparison results
are shown in Figure 1. The PSOX operator exhibits superior convergence speed compared to LX across
all four test functions. For functions 5 (Levy Montalvo 2) and 7 (Rosenbrock), PSOX demonstrates
comparable performance to AX. In function 4 (Levy Montalvo 1), PSOX achieves marginally faster
convergence and significantly enhanced stability relative to AX. Furthermore, PSOX shows both
accelerated convergence and improved stability in function 11 (Schewefel 4). Overall, benefiting from
its strategy of continuously learning from the globally optimal individual, the PSOX operator has
remarkable convergence speed and convergence accuracy. Its characteristic of high stability ensures that
the results obtained from a single run of the algorithm have a very high level of confidence, thus
reducing the waste of resources caused by repeated testing.

Fig. 1. Comparison of the convergence speeds of different operators in four test cases

5.3 The Relationship between PSOX and the Mutation Rate

As clearly shown in Figure 2, for Test Functions 4 and 5 (Levy Montalvo 1 and Levy Montalvo 2),
the algorithm's performance improves with the increase in mutation rate, and its stability gradually
enhances.
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In contrast, for Test Functions 7 and 11 (Rosenbrock and Schewefel 4), the algorithm's performance
is inversely proportional to the mutation rate, and the standard deviation of the optimal fitness function
values gradually increases.

Test Functions 4 and 5 are characterized by dense multi-peaks, complex oscillations, and multi-scale
closed contour lines. These features make the PSOX operator primarily focused on convergence prone to
falling into local optima. Therefore, a higher mutation rate is required to maintain population diversity
and escape local optima. According to the operator's formula, once an individual successfully escapes a
local optimum, this information is rapidly disseminated to all individuals through crossover, enabling
overall population evolution. In contrast, Test Functions 7 and 11 exhibit images with narrow valleys,
separable chain structures, and strong regularity, which are more suitable for lower mutation rates. A
higher mutation rate may disrupt important genes and lead to divergent results.

Fig. 2. The influence of the mutation rate on the GA with the PSOX operator

6 Conclusion

This paper proposes a crossover operator for real-coded representation, inspired by the PSO
algorithm, called the PSO-Inspired Crossover operator (PSOX). PSOX is a multi-parent crossover
method that allows cross-generational operation, simultaneously learning from the globally optimal
individual and the historical optimal solutions of other individuals. Through three experiments, we
comprehensively tested and analyzed the accuracy, stability, and convergence speed of the genetic
algorithm configured with relevant crossover operators, and explored the relationship between the
performance of PSOX and the mutation rate.

In the first experiment, we compared the PSOX operator with five other typical operators on 15 test
functions. Regardless of whether the mutation operator was NUM or GM, in most test cases, PSOX
outperformed other operators in terms of accuracy and stability. In a few test functions such as Function
4 and 5, due to the dense local optima and highly oscillatory terrain, PSOX showed poor performance.
However, it was found in Experiment 3 that increasing the mutation rate could effectively solve such
problems. Meanwhile, the performance of PSOX-GM was better than that of PSOX-NUM.

In the second experiment, four test functions were selected to compare PSOX with two other
operators. It was found that the PSOX operator had a very fast convergence ability and stable
convergence performance. The third experiment demonstrated the influence of different mutation
operators on PSOX and provided suggestions for the application of PSOX: For problems with smooth,
continuous, and highly regular solution spaces, even if there are many local optima, a lower mutation
rate is more appropriate. For problems with high oscillations and multi- scale closed contours, a larger
mutation rate should be used, and it can even be set to 1. Such a setting can significantly improve the
solution results.
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PSOX：融合歷史與全局最優的遺傳交叉多樣性加速機制

金曉波1，屠嘉樹2
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摘要：本研究提出一種面向實數編碼遺傳算法的新型交叉算子PSOX，通過策略性地融合粒子羣

優化（PSO）機制，顯著提升搜索效率。與傳統僅依賴當代種羣信息交換的交叉方法不同，

PSOX同時利用全局最優解與跨代歷史最優解進行引導，在保持種羣多樣性的同時自適應地探索

高潛力搜索區域。基於15個基準函數（涵蓋單峯、多峯及高複雜度地貌）的系統評估表明，

PSOX在解精度、穩定性與收斂速度方面均優於五種現有先進算子，尤其在與最優變異策略耦合

時表現突出。進一步對變異率影響的深入剖析，爲不同優化場景提供了可操作的參數調優指南。

PSOX通過橋接遺傳算法的進化穩健性與粒子羣優化的方向學習優勢，爲複雜問題域的快速收斂

提供了新範式。
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