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Abstract

To address the issue of low accuracy in object detection for autonomous driving, we propose an
attention-enhanced multi-modal fusion three-dimensional object detection method (EA-BEV). This
method incorporates a self-attention mechanism in the image processing network, which effectively
extracts deep features and reduces the problem of insufficient image feature extraction caused by
semantic information blurriness. In the point cloud processing network, we designed a high-order
convolutional spatial attention mechanism that significantly enhances the network's ability to model and
express non-linear deep features of point clouds, thereby improving the global descriptive capability of
point cloud information. We conducted comparative experiments on the nuScenes dataset, and the
results show that the mAP metric is 76.2% and the NDS metric is 74.4%. The EA-BEV method
demonstrates a clear advantage in the accuracy of 3D object detection, providing a new approach for
environmental perception in autonomous driving.
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1 Introduction

With advancements in autonomous driving and smart transportation systems, autonomous driving
technology for electric vehicles has also advanced rapidly, attracting widespread attention from both
academia and industry [1]. The goal of autonomous driving is to enable vehicles to intelligently perceive
their surrounding environment. Environmental perception is one of the core technologies of autonomous
driving, and the accuracy of perception directly affects the stability and safety of the autonomous driving
system. Currently, 3D object detection methods for autonomous driving can be categorized into three
types based on the type of sensors used: camera-based 3D object detection methods, LiDAR-based 3D
object detection methods, and camera-LiDAR fusion-based 3D object detection methods [2]. In camera-
based 3D object detection methods, a surround-view camera (multi-camera) strategy is commonly
adopted. Multiple cameras can comprehensively capture environmental information around the
autonomous vehicle (e.g., BEVFormer [3]). However, since cameras capture 2D image data lacking
depth information and are susceptible to lighting conditions, detection accuracy is relatively low, and
false detections are common, which limits their application in autonomous driving scenarios.

In contrast, LIDAR-based 3D object detection methods use multi-beam LiDAR to collect information
around the vehicle (e.g., PointPillars [4]). Although the captured point clouds contain depth information
and are unaffected by lighting, they are sparse and lack texture details, which can also lead to false
detections. Camera-LiDAR fusion-based 3D object detection methods (e.g., TransFusion [5]) can
leverage the rich semantic information in images and provide highly accurate depth information,
enabling better performance and broader application scenarios. Therefore, exploring 3D object detection
methods based on image and point cloud fusion offers a valuable approach for the industry.

The 3D object detection method based on image and point cloud fusion can overcome the limitations
caused by the sparsity of point clouds and the loss of semantic information in single sensors. Depending
on the fusion strategy, it can be divided into three types: early fusion (data-level fusion), deep fusion
(feature-level fusion), and late fusion (object-level fusion) [6]. Classic camera and LiDAR fusion
methods focus on feature-level fusion (i.e., deep fusion), using heuristic algorithms to separately process
the data features from cameras and LiDAR. A fusion module then generates BEV (Bird's Eye View)
features to achieve 3D object detection. The BEVFusion [7] algorithm is a pioneering algorithm for
scene-level BEV fusion. BEVFusion focuses on how to perform the fusion and designs modules for the
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camera data stream, LIDAR data stream, and fusion module, unifying the camera and LiDAR features
into the BEV space. The MetaBEV [8] algorithm introduces cross-modal attention integration through a
Mixture of Experts (MoE), further enhancing the BEV features. The Is-Fusion [9] algorithm proposes an
instance scene feature fusion method, strengthening the capability of query features. The BEVDiffuser
[10] algorithm introduces a diffusion model to further improve the fusion ability of network features.
However, these algorithms mainly enhance the BEV feature queries on the BEV feature maps, while
overlooking the insufficient semantic information in the image and point cloud features obtained from
various sensors, which ultimately limits the detection performance after fusion. Most existing fusion
algorithms are unable to directly process both image and point cloud data. For image data, this often
results in inadequate extraction of texture information and blurred semantic representation. For point
cloud data, the use of a single CNN-based convolution model relies only on first-order statistics, which
fails to capture global information and ignores the ability to model the nonlinear deep features inherent
in spatial point cloud data.

To address the above issues, we propose an attention-enhanced multimodal fusion 3D object
detection method, which we call EV-BEV. This method fully leverages the two modalities of multi-
camera and LiDAR data to generate high-quality fused BEV features. Our contributions are as follows:

A high-order convolutional spatial attention mechanism is designed in the LIDAR data stream, which
computes the covariance matrix of the mapped point cloud features to obtain high-order features of the
point cloud, thereby enhancing the network's capability to model spatial correlations in point cloud data.

A self-attention mechanism is designed in the image data stream to enhance the extraction of image
texture information and capture deep features with rich semantic content.

Experiment on nuScenes dataset, and the results demonstrate that our EV-BEV method achieves
superior performance in multimodal fusion 3D object detection.

2 Implementation Method

In this section, we first introduce the overall structure of the EA-BEV algorithm that we designed;
next, we analyze the theories of high-order convolutional spatial attention and self-attention
mechanisms.

2.1 EM-BEY Overall Architecture

The overall architecture of the EM-BEV we designed is shown in Figure 1. EM-BEV consists of a
multi-camera processing module (Camera Stream), a point cloud processing module (LiDAR Stream),
and a BEV feature fusion module. In the Camera Stream, we design a self-attention mechanism module
to improve the network's feature extraction capability from multi-camera views, enhancing the network's
ability to extract image texture information and obtain rich semantic deep features. In the LiDAR
Stream, we design a high-order convolution module to enhance the network's ability to capture the
nonlinear (second-order) deep features of point cloud data and improve its capacity to describe global
information. The fusion module employs a fusion mechanism similar to BEVFusion [7]. First, the BEV
features of point clouds and images are concatenated along the channel dimension, and the concatenated
features are then extracted through a convolutional network. Next, global average pooling and
convolution prediction are used to adaptively select the concatenated features. Finally, the fused BEV
features are output and fed into the detection head for detection to obtain the final detection results.

Camera BEV/
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Fig. 1. Overall architecture of EM-BEV
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2.2  High-order Convolution Mechanism

The feature map output from the convolution processing of point cloud data in the 3D Backbone is
denoted as F, which serves as the input for higher-order convolution. Here Fe "¢  where H
represents the height of the feature map, W represents the width of the feature map, and C represents the

number of channels in the feature map. The feature map F, (i =1...,C ) is processed into a column
vector f, with a channel count of 1, and then the correlation covariance of each column vector (feature

i

channel) is calculated as:

cov(f, f,) cov(f,f,) ... cov(f,f.)
cov(fy, ;) cov(fy, fr) ... cov(fy, fL)

cov(f., f,) cov(f.,f,) cov(f., f.) )

For the sake of convenience in calculations, we compose the feature matrix A € <" from the feature
channel vector f; ,where M =H xW ,with M representing the M-dimensional local features in a

channel space. The covariance matrix P is obtained through the potential interactions of the convolution
features, and the expression for P is as follows:

P=AyA"
X 2)

where y is defined as:

)
x=—|1-—NN

where [ is the identity matrix of size M xM ,and N =[L,1,...,1]is an n-dimensional vector where all
elements are 1. The covariance matrix 4 uses a global CP method based on iterative matrix square root
normalization instead of ordinary average pooling. Any symmetric positive definite matrix has a unique
square root that can be accurately computed through EIG (Eigenvalue Decomposition) or SVG (Singular
Value Decomposition). Therefore, the matrix 4 is decomposed into its EIG as follows:

EIG(A) = BAB" @)
where B is an orthogonal matrix, and A =diag(4,,...,A4,) 1is a diagonal matrix with the

eigenvalues A4, of 4 on its diagonal. Therefore, 4 has a square root 77,

1, = Bdiag(A7)B" )

Among them, n° = 4, but EIG and SVD are not supported on graphic processors. Higham et al. [11]
studied a class of iterative algorithms for computing the square root of a matrix. Subsequently, Li et al.
[12] proposed an iterative matrix square root normalization for CP using the Newton-Schultz iteration
based on this method. This process consists of three distinct stages: pre-normalization, Newton-Schultz
iteration, and post-compensation.

First, this iterative method converges within a local boundary [13], and the pre-normalization is
achieved by computing the trajectory of P, defined as follows:

1
=’ (6)

Next, the Newton-Schultz iteration is performed, where this stage is repeated k times to produce the
approximate matrix square root 77, (/ =1,...,¢) . Based on the given initial matrices 7, =4 and p, =1,

the computation structure for the square root Y of 4 is as follows:
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1 1
m= 577/71 GBI =), 1y = 5(31_!‘/7177171 My (7

The post-compensation 7, is defined as follows:

cp = Jtr(P)n, 8)

The final square root cp obtained is the result after the CP operation, which is then input into the fully
connected layer for downstream tasks.

To optimize the efficiency of calculating the covariance matrix, H and W are simplified to H" and W".
The feature F'e R” " is interpreted as having c-dimensional local features at each spatial location,
forming a two-dimensional space with dimensions H'xW' . The spatial covariance matrix of size
M x M after second-order pooling is as follows:

P =AyA”
X ©9)

The i-th row of P’, where i =(1,..., N) represents the statistical dependence relationship between the
spatial feature i and all features in P’ . The spatial dimensions are scaled from H'to H and from W'to W.

The specific operations are as follows: perform row-wise convolution on the covariance matrix, with
the number of input channels being M and the number of output channels being 4M , resulting in a
tensor of size 4M xI. Next, the tensor is adaptively downsampled and then convolved again, with the
number of channels being M. After applying the sigmoid activation function, the tensor is upsampled to
aresolution of H x W, generating a weight tensor V € R”*" . As shown in Figure 2.
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Fig. 2. Flowchart of high-order convolution

2.3 Self-attention Mechanism

To address the issues of insufficient texture information extraction and vague semantic information
during feature extraction in image data, a self-attention mechanism has been adopted. The self-attention
mechanism plays a key role in image feature extraction. By calculating the weighted relationships
between input features, it effectively captures long-range dependencies and important features within the
image. This mechanism enables the model to adaptively focus on different regions when processing
features, thereby enhancing the expression of important information and suppressing redundant or
irrelevant features, significantly improving the effectiveness of object detection. The structural diagram
of the self-attention mechanism is shown in Figure 3.

Self-attention mechanism [14] Map the input sequence X =(x,,x,,...,x,) linear transformation into
query vector O =(¢,,9,,...,q,) , bond vector K =(k,,k,,...,k,) and value vector V' = (v,,v,,...,v,) .By
calculating the similarity between vector Q and vector K S, ; = 0'K ; »Then convert it into attention

distribution through softmax function SA#z. And weighted sum of the value vector V' with this
distribution to obtain the upper and lower vector C. SA¢t is defined as:

SAtt = exp(S, ;)- (Zrexp(S;,) ™ (10)
C,- = Z;:lAi,jVi,j (1 1)

The SAtt calculation formula can be written as:
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Fig.3. Self-Attention mechanism structural diagram

3 Experimental Results and Analysis

In this section, we first introduce the dataset and evaluation metrics used by the EA-BEV algorithm;
next, we present the settings of the parameters and the operating environment during algorithm training;
finally, we analyze the experimental results and the ablation experiments.

3.1 Dataset and Evaluation Metrics

Dataset

The nuScenes [15] dataset is a large-scale dataset for 3D perception, containing over 40,000
annotated scenes. Each sample in the dataset is equipped with inputs from lidar and surrounding
cameras. This dataset not only provides multi-view image data but also includes rich environmental
information, such as road signs, pedestrians, and vehicles. This makes nuScenes an important resource
for research in autonomous driving and intelligent transportation systems, allowing researchers to utilize
its multimodal data for model training and validation. The specific number of scenes used in this
experiment is as follows: the training set consists of 700 scenes, the validation set has 150 scenes, and
the test set contains 150 scenes (excluding annotated data).

Evaluation Metrics

The official nuScenes dataset provides seven evaluation metrics, which are mAP, NDS, mATE,
mASE, mAOE, mAVE, and mAAE.

3.2  Experimental Parameters

Experimental Setup

The training process for the MLDF-BEV model employed the AdamW optimizer [16], featuring a
weight decay coefficient of 0.01 and an initial learning rate of 2.0x10™*, which was gradually decreased
using a cosine annealing schedule [17]. In line with the CenterPoint method [18], the ground truth for
3D spatial instances was randomly rotated within a range of £22.5°.

EA-BEV Operating Environment

The entire training process was conducted on four RTX 4090 GPUs over 24 epochs, with a batch size
of 8. During model inference, no test time augmentation (TTA) techniques were applied. The software
and hardware configurations used in this experiment, as well as the version details, are as follows: CPU
is Gold 5218Rx2, RAM is 224GB, GPU is RTX 4090x4, the operating system is Ubuntu 18.04, CUDA
version is 11.1, and PyTorch version is 1.9.1.

3.3  Experimental Results

Our EA-BEV model is first evaluated on the nuScenes validation set and compared with current state-
of-the-art methods, with the detailed comparison results shown in Table 2. To ensure the objectivity of
the comparison data and eliminate other interfering factors, we trained all the algorithms in Table 2 on
our server for 24 epochs. The experimental parameters were set the same as those of our EA-BEV, and
the results after training are shown in Table 1. Our EA-BEV has improved the mAP value by 0.8%
compared to V-Fusion[19]. Our EA-BEV algorithm has improved the NDS value by 1.2% compared to
Is-Fusion[9]. Similarly, we conducted inference tests on the nuScenes test set, and the experimental
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results are shown in Table 2. Our EA-BEV has improved the mAP value by 0.6% compared to V-
Fusion[19]. Our EA-BEV algorithm has improved the NDS value by 0.8% compared to BEVDiffuser
[9].

The reasons for the superior performance of our algorithm can be attributed to two main factors. First,
during the feature extraction process, we introduced an image self-attention mechanism. This
mechanism effectively enhances the ability to extract semantic information and deep features, reducing
semantic ambiguity between features and ensuring that the model can accurately understand and process
complex images. This means that the model can more precisely capture important information within the
images, thereby improving overall performance. Second, we adopted a higher-order spatial attention
mechanism based on higher-order convolutions. This mechanism leverages the covariance matrix of the
point cloud feature maps to obtain higher-order features of the point cloud. This approach not only
allows the model to better understand spatial relationships within the point cloud data but also enhances
the network's ability to model the spatial correlations of the point cloud data. This improved modeling
capability enables our algorithm to exhibit greater robustness and accuracy when handling point cloud
data in practical applications. Overall, these two factors collectively drive the superior performance of
our algorithm, allowing it to achieve favorable results across various tasks. The visualization results are
shown in Figure 4.

Table 1. Comparison of 3D object detection performance based on nuScenes image val set. The best and second-
best performances are marked in red and blue, respectively.

Methods Backbone mAP? NDS?T mATE] mASE| mAOE] mAVE] mAAE]|

TransFusion[5] ResNet 0.675 0.713 0.283 0.278 0.285 0.301 0.246
BEVFusion[7] ResNet 0.685 0.714 0.271 0.276 0.269 0.286 0.238
MetaBEV([8] ResNet 0.680 0.715 0.268 0.265 0.262 0.272 0.228
Is-Fusion[9] ResNet 0.720 0.732 0.273 0.254 0.287 0.260 0.219
BEVDiffuser[10] ResNet 0.719 0.692 0.276 0.252 0.294 0.266 0.184
V-Fusion[19] ResNet 0.727 0.730 0.251 0.243 0.258 0.259 0.199
SparseFusion[20] ResNet 0.710 0.731 0.262 0.250 0.264 0.256 0.201

EA-BEV ResNet+EA 0.735 0.744 0.253 0.241 0.255 0.259 0.198

Table 2. Comparison of 3D object detection performance based on nuScenes image test set. The best and second-
best performances are marked in red and blue, respectively.

Methods Backbone mAP? NDS?T mATE] mASE| mAOE] mAVE] mAAE]|

TransFusion[5] ResNet 0.716 0.689 0.285 0.277 0.283 0.303 0.248
BEVFusion[7] ResNet 0.729 0.702 0.269 0.273 0.267 0.286 0.237
MetaBEV([8] ResNet 0.745 0.714 0.269 0.268 0.267 0.278 0.229
Is-Fusion[9] ResNet 0.752 0.730 0.277 0.258 0.289 0.253 0.221
BEVDiffuser[10] ResNet 0.753 0.733 0.277 0.252 0.296 0.265 0.188
V-Fusion[19] ResNet 0.756 0.732 0.253 0.246 0.254 0.257 0.201
SparseFusion[20] ResNet 0.738 0.720 0.264 0.255 0.267 0.259 0.204

EA-BEV ResNettEA 0.762 0.741 0.255 0.244 0.257 0.261 0.200
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Fig.4. The visualization results of EA-BEV

3.4  Ablation Study

To verify the effectiveness of the component modules designed in EA-BEV for 3D object detection in
autonomous driving, we will integrate the designed high-order convolutional layer and self-attention
mechanism into the ResNet network for performance comparison. The setup of the ablation experiments
and the experimental results are shown in Table 3. In the feature extraction network, when only the high-
order convolution module is used, the mAP metric improves by 2.6%, and the NDS metric improves by
1.6%. When only the self-attention module is used, the mAP metric improves by 2.2%, and the NDS
metric improves by 1.1%. When both modules are used simultaneously, the mAP metric improves by
3.7%, and the NDS metric improves by 2.8%. The high-order convolutional spatial attention module can
capture higher-order features of point cloud information, thereby enhancing the network's capability to
model global information representation. The self-attention module improves the ability to extract
texture semantic information during image feature extraction and enhances the effectiveness of
information capture in deep image features.

Table 3. The ablation studies of the EA-BEV module.

High-order Convolution Self-attention mAP NDS
- - 0.698 0.716
V - 0.724 0.732
- l 0.720 0.727
J l 0.735 0.744
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4 Conclusion

In the EA-BEV model we proposed, different feature extraction enhancement methods were adopted
for image data processing and point cloud data processing, respectively. The image data processing
utilized a self-attention mechanism, which effectively reduces the issues of insufficient image feature
extraction caused by the ambiguity of semantic information. In the point cloud processing network, we
designed a high-order convolutional spatial attention mechanism, which can effectively enhance the
network's global descriptive ability for point cloud information. This improved the EA-BEV model's
object detection capability, while also increasing the model's mAP and NDS values. The EA-BEV
method proposed in this paper has achieved significant progress in the multimodal fusion technology for
autonomous driving. However, this method also has certain limitations. The use of attention based on
the Transformer mechanism in the model results in a longer training time for the detector. To address
this issue, further optimization of the network model structure can be implemented to enhance the
training speed.
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