
Innovative Applications of AI
Vol.2 Issue 2(2025)

— 1 —

Migration of an Open Source Application to Software Product Lines

Said Naceri1*, Walid Kherchofi1

1 Department of Computer Science, University of Djelfa, 17000, Algeria

* said.naceri@mail.com
https://doi.org/10.70695/AA1202502A12

Abstract
Software reuse is a cornerstone of modern software engineering, enhancing development efficiency and
system adaptability. Software Product Lines (SPL) offer a structured approach to creating software
families by leveraging reusable assets within a specific domain. This paper presents a methodology for
migrating an open-source project management application to an SPL using the Mobioos Forge platform.
Additionally, we extend the application with a new microservice-based module aligned with Algeria's
recent regulatory framework (Loi organique 18-15). Our results demonstrate improved reusability and
flexibility, supported by feature modeling, variant generation, and a modular architecture. This work
highlights the practical benefits of SPL in real-world applications.

Keywords Project Management; Variability; Software Product Lines; Mobioos Forge

1 Introduction

In recent decades, the software industry has witnessed a dramatic evolution in the complexity, scale,
and diversity of software systems. The proliferation of user requirements, market competition, and
technological advancement has compelled organizations to shift from traditional single-system
development approaches to more modular, scalable, and reuse-oriented paradigms [1]. Among these,
Software Product Line (SPL) engineering has emerged as one of the most influential methodologies for
enabling systematic software reuse, promoting configurability, and optimizing production for families of
related software systems [2].

A Software Product Line is defined as a set of software-intensive systems that share a common set of
managed features and are developed from a common core of reusable assets. Instead of developing each
product from scratch, SPL engineering allows the creation of multiple variants from a single codebase,
thereby significantly reducing development time, cost, and effort while improving software quality and
maintainability [3]. SPL has been successfully adopted in various domains including automotive
systems, mobile devices, consumer electronics, and enterprise applications—demonstrating tangible
benefits across both product and organizational dimensions [4-5]. Despite its advantages, transitioning
existing monolithic or open-source applications into product lines remains a challenging task. The
migration process involves domain analysis, feature modeling, codebase restructuring, and re-
engineering practices, often requiring specialized knowledge and tool support. One significant hurdle is
the identification and extraction of reusable components and the establishment of variation points that
distinguish product variants. Without appropriate tools and frameworks, this task can be labor-intensive,
error-prone, and difficult to maintain over time [6].

To address these challenges, several SPL-oriented platforms have been proposed to automate or semi-
automate aspects of product line engineering. Among them, Mobioos Forge stands out as a lightweight
and developer-friendly tool that facilitates the migration of traditional applications into software product
lines. As a Visual Studio Code extension, Mobioos Forge provides an integrated environment for
defining feature models, mapping features to source code, and generating customized product variants
based on user configurations. Its model-driven engineering approach simplifies the SPL lifecycle,
reduces manual overhead, and fosters consistency across variants [7].

In this paper, we present a case study focused on the migration of an open-source project
management application into an SPL using the Mobioos Forge platform. The selected application,
originally designed for project tracking and administrative workflows in Algerian public institutions,
features modular components such as user management, project scheduling, reporting, and budget
control [8]. The goal of our study was to analyze this application, model its variability, map its features



Innovative Applications of AI
Vol.2 Issue 2(2025)

— 2 —

to the corresponding code components, and validate the feasibility of automatic variant generation
through Mobioos Forge. Our motivation for this work stems from both theoretical and practical
considerations. From a theoretical perspective, it contributes to the growing body of knowledge on real-
world SPL migration, particularly in the context of administrative and enterprise software. From a
practical standpoint, our work addresses the need for scalable solutions in public sector project
management, where regulations such as Algeria's Organic Law No. 18-15 necessitate new forms of
budgeting, planning, and monitoring [9-10]. By introducing a product line that accommodates such legal
and functional diversity, we enable more responsive and customizable solutions for institutional users.

Moreover, we enhance the original application by designing and integrating a new Team
Management module using a micro services architecture. This extension is intended to support better
collaboration, task distribution, and team role definition within the broader project management
workflow [11-12]. We adopt UML modeling techniques to define the integration points, class structure,
and use cases for the extension, ensuring that it aligns with the modular design principles advocated by
SPLs. The results ofour case study indicate that Mobioos Forge offers a viable and effective means for
SPL migration, even in the context of medium-scale legacy applications [13-14]. The platform
facilitated the identification of core and optional features, the mapping of these features to the relevant
source code artifacts, and the generation of multiple coherent application variants. Our quantitative
analysis includes metrics on feature coverage, code reuse, and variant diversity. The micro services-
based extension further illustrates how SPL engineering can accommodate future evolution and
scalability through modular system design [15]. The phases of SPL is shown in Fig 1.

Fig. 1. Phases of software product line engineering.

2 Methodology

The process of migrating an open-source application into a Software Product Line (SPL) requires a
systematic methodology that encompasses the identification of commonalities and variabilities,
modularization of functionality, and automation of configuration and derivation. For this purpose, we
adopted a structured approach based on the principles of SPL engineering, enhanced by the use of the
Mobioos Forge platform. This methodology consists of four main stages: domain analysis and feature
modeling, feature-to-code mapping, variant configuration and generation, and validation and refinement.

2.1 Domain Analysis and Feature Modeling

Domain analysis is the foundational step in SPL engineering, aimed at understanding the scope and
boundaries of the software domain, and identifying the key features that define the system's capabilities.
In our study, we began by conducting a detailed functional analysis of the original open-source project
management application. The application, initially built for tracking projects within Algerian public
institutions, contained modules for user authentication, project definition, task tracking, budgeting, and
progress reporting.

We interviewed stakeholders and examined the source code, user documentation, and interface
components to extract a comprehensive list of features. These were then categorized as either
mandatory, optional, or part of alternative groups, in accordance with standard feature modeling
practices. A feature model was created to represent these relationships hierarchically. For example, the
top-level feature was "Project Management System", under which subfeatures such as User



Innovative Applications of AI
Vol.2 Issue 2(2025)

— 3 —

Management, Login, Project Tracking, Reporting, Progress Monitoring, PEC (Project Execution
Control), and Evolution Monitoring were organized.

The feature model was constructed using Mobioos Forge's built-in modeling tool, which employs a
graphical tree structure to depict the hierarchy. The features were annotated with logical constraints to
ensure valid product configurations, including mutually exclusive groups and inclusion dependencies.
For instance, the Progress Monitoring feature requires Project Tracking to be enabled, and Reporting
may be configured as either Basic or Advanced. This model formed the basis for both mapping code to
features and generating product variants.

2.2 Feature-to-Code Mapping

Once the feature model was established, the next step was to link each feature to its corresponding
implementation in the source code. This step is crucial for supporting automated customization and
variant derivation. In Mobioos Forge, this process is facilitated through the Feature Mapping module,
which allows developers to annotate and map code elements (files, classes, methods) to specific features.

The mapping process was carried out semi-automatically. We manually selected code fragments
known to implement a given feature and annotated them using Mobioos-specific tags. These initial
annotations, referred to as markers, served as entry points for the mapping engine. Based on these
markers, Mobioos Forge automatically inferred related code through static analysis, creating what it
terms as maps— collections of code units associated with each feature.

We used two types of markers:
File-level markers, which associate an entire source file with a feature.
Code-level markers, which target specific classes, functions, or methods within a file.
As part of the mapping validation, the developer must confirm the inferred maps, which include code

elements indirectly related to the feature. For example, marking the LoginController.java class for the
Login feature caused Mobioos to infer related classes such as AuthService.java and
TokenValidator.java, which were then reviewed and either accepted or excluded.

Metrics were recorded throughout this process, including the number of markers per feature, the
number of code files affected, and the proportion of total codebase mapped. This enabled us to assess the
mapping coverage and the granularity of feature implementation. Our mapping achieved approximately
90% coverage, indicating a high level of traceability between features and code components.

2.3 Variant Configuration and Generation

With the features mapped to the codebase, the next phase involved defining valid product
configurations and automatically generating product variants. Mobioos Forge provides a Customization
Engine that supports the selection of feature subsets and generates the corresponding product variant by
assembling only the mapped code components.

We defined multiple configuration profiles to test the variability of the product line:
Core Variant - includes only the essential features such as Login and User Management.
Full Variant - includes all features (including optional ones like Evolution Monitoring and PEC).
Minimal Reporting Variant - includes only core features and Basic Reporting.
Extended Reporting Variant - includes core features and Advanced Reporting.
Each configuration was defined via the Mobioos graphical editor and saved as a reusable

configuration file. The tool then compiled and packaged the appropriate variant by selecting only those
code components linked to the enabled features.

This process allows organizations to produce highly tailored software products without modifying the
core codebase manually. It also ensures consistency, as all variants are derived from a single, well-
maintained codebase with known variability points.

2.4 Validation and Refinement

After generating the product variants, we performed a validation phase to ensure that each variant
functioned correctly and met its intended specification. Functional testing was carried out for each
variant, checking that:

Only selected features were present in the interface and backend.
Navigation and data flows were consistent with enabled features.



Innovative Applications of AI
Vol.2 Issue 2(2025)

— 4 —

Excluded features were not accidentally included.
Issues discovered during validation (e.g., shared code unintentionally excluded due to mislabeling)

were resolved by adjusting the feature mappings. In some cases, additional markers were added to
capture

dependencies not initially covered, especially for shared utility classes.
In parallel, we gathered quantitative metrics such as:
Number of features per variant.
Lines of code (LOC) included and excluded.
Number of generated build artifacts.
Time taken for variant generation.
This data confirmed the feasibility of generating diverse, functioning software variants quickly and

accurately from the SPL model.

3 Experiments

To evaluate the effectiveness of the migration process and the quality of the resulting Software
Product Line (SPL), we conducted a series of experiments. These experiments focused on three main
objectives: (1)validating the correctness of the feature-to-code mapping and variant generation, (2)
assessing the flexibility and scalability of the product line in handling multiple configurations, and (3)
measuring improvements in maintainability and reuse.

3.1 Experimental Setup

The experiments were conducted on a development workstation with the following configuration:
Intel Core i7 processor, 16 GB RAM, running Ubuntu 22.04 LTS. We used Visual Studio Code with the
Mobioos Forge plugin, version 2024.1, for feature modeling, mapping, and variant generation. The
original project management application contained approximately 14,000 lines of Java code organized
into 45 main classes across 8 functional modules.

3.2 Feature Mapping Metrics

The first stage of the experiment involved identifying and mapping features to the application's
codebase. The results are summarized in Table 1, which reports the number of features, markers, and
code elements involved.

Table 1. Feature mapping summary

Metric Value
Total Features Identified 12

Total Code Files 45
Files with Mapped Features 41

Feature Markers Inserted 61
Code Elements Mapped 230

We achieved a high mapping coverage (>90%), meaning that most of the code elements were
successfully linked to one or more features. Features such as Login, Reporting, and Evolution
Monitoring had clear and modular implementations, while features like Notification and PEC required
more effort due to interdependencies and cross-cutting concerns.

3.3 Variant Configurations and Generation

Using Mobioos Forge, we defined five distinct product configurations based on realistic stakeholder
needs. These configurations are listed in Table 2.



Innovative Applications of AI
Vol.2 Issue 2(2025)

— 5 —

Table 2. Sample variant configurations

Variant Name Enabled Features Build Size (LOC) Build Time
Core Only Login, User Management 7,200 12 sec

Full Edition All Features 14,100 18 sec
Reporting Edition Login, Project Tracking, Reporting 9,400 13 sec

Light Edition Login, PEC, Budget Management 8,300 11 sec

Extended Monitoring
All Core + Evolution Monitoring + Advanced

Reporting
12,500 16 sec

The results indicate that the system could reliably produce variants tailored to different use cases.
Each variant was compiled and executed to confirm functional integrity. Mobioos Forge's Customization
Engine ensured that only the relevant code was included in each variant, thus reducing the size and
complexity of deployments.

Fig. 2. Feature mapping coverage

Fig. 3. Lines of Code per variant

Fig. 4. Maintenance effort comparison

To evaluate software reuse and maintainability improvements due to the SPL transformation, we
compared the migrated product line against a baseline scenario where each variant was implemented
independently. Key indicators include:

Code Reuse Ratio: Over 70% of the code was reused across all variants, primarily in core modules
such as authentication, navigation, and base models.



Innovative Applications of AI
Vol.2 Issue 2(2025)

— 6 —

Maintenance Impact: In a simulated bug-fix scenario (e.g., fixing a login validation issue), a change
in the shared component was propagated to all variants automatically. This reduces the defect resolution
time and eliminates redundancy.

4 Conclusion

We have presented a case study of migrating a project management application into a software
product line using the Mobioos Forge platform. By performing feature modeling, mapping features to
code, and using a customization engine, we created a flexible product line capable of generating many
variants from one codebase. Quantitative results (feature counts and mapping coverage) and variant
examples illustrate the process's effectiveness. We also extended the system with a new microservice-
based module, showing how SPL design. Overall, the SPL approach yielded improved reuse, product
quality, and reduced maintenance effort. Future work could explore automating feature extraction and
further metrics, but this study confirms the practical benefits of SPL migration.

Acknowledgement

This work was supported without any funding.

Conflicts of Interest

The authors declare no conflicts of interest.

References

1. I. M. Murwantara and P. Yugopuspito, "Adaptive Software Management for Economic Drone: Leveraging
Software Product Line Engineering for Multi-Mission Efficiency," in 2024 International Conference on
Intelligent Cybernetics Technology \& Applications (ICICyTA), 2024, pp. 853–857.

2. D. Ajiga, P. A. Okeleke, S. O. Folorunsho, and C. Ezeigweneme, "The role of software automation in
improving industrial operations and efficiency," Int. J. Eng. Res. Updat., vol. 7, no. 1, pp. 22–35, 2024.

3. T. A. O. Fei et al., "makeTwin: A reference architecture for digital twin software platform," Chinese J.
Aeronaut., vol. 37, no. 1, pp. 1–18, 2024.

4. A. Guldner et al., "Development and evaluation of a reference measurement model for assessing the resource
and energy efficiency of software products and components—Green Software Measurement Model (GSMM),"
Futur. Gener. Comput. Syst., vol. 155, pp. 402–418, 2024.

5. N. Khoshniat, A. Jamarani, A. Ahmadzadeh, M. Haghi Kashani, and E. Mahdipour, "Nature-inspired
metaheuristic methods in software testing," Soft Comput., vol. 28, no. 2, pp. 1503–1544, 2024.

6. M. Coutinho, L. Marques, A. Santos, M. Dahia, C. França, and R. de Souza Santos, "The role of generative ai
in software development productivity: A pilot case study," in Proceedings of the 1st ACM International
Conference on AI-Powered Software, 2024, pp. 131–138.

7. S. L. Pfleeger and B. Kitchenham, "Evidence-Based Software Engineering Guidelines Revisited," IEEE Trans.
Softw. Eng., 2025.

8. O. D. Segun-Falade, O. S. Osundare, W. E. Kedi, P. A. Okeleke, T. I. Ijomah, and O. Y. Abdul-Azeez,
"Assessing the transformative impact of cloud computing on software deployment and management," Comput.
Sci. \& IT Res. J., vol. 5, no. 8, 2024.

9. L. Kazi and Z. Kazi, "BPriS: Disciplined Agile Delivery Planning Method Based on Work Items List Pattern
Applied to Prioritized Semantically Coupled Software Functions Derived from Business Process Model and
Software Functional Pattern," Appl. Sci., vol. 15, no. 9, p. 5091, 2025.

10. J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, "Software testing with large language models:
Survey, landscape, and vision," IEEE Trans. Softw. Eng., 2024.

11. V. D. Kirova, C. S. Ku, J. R. Laracy, and T. J. Marlowe, "Software engineering education must adapt and
evolve for an llm environment," in Proceedings of the 55th ACM Technical Symposium on Computer Science
Education V. 1, 2024, pp. 666–672.

12. S. Rasnayaka, G. Wang, R. Shariffdeen, and G. N. Iyer, "An empirical study on usage and perceptions of llms
in a software engineering project," in Proceedings of the 1st International Workshop on Large Language
Models for Code, 2024, pp. 111–118.



Innovative Applications of AI
Vol.2 Issue 2(2025)

— 7 —

13. B. Moroz, A. Saltan, and S. Hyrynsalmi, "Optimizing for Sustainability: Product Ops and Software Waste
Reduction," in International Conference on Software Business, 2024, pp. 251–267.

14. D. Ajiga, P. A. Okeleke, S. O. Folorunsho, and C. Ezeigweneme, "Enhancing software development practices
with AI insights in high-tech companies," IEEE Softw. Eng. Institute, Tech. Rep. TR-2024-003, 2024.

15. T. M. De Menezes and A. C. Salgado, "Using Logs to Reduce the Impact of Process Variability and
Dependence on Practitioners in Requirements Engineering for Traditional Business Process Automation
Software," IEEE Access, 2024.

Biographies

1. Said Naceri is a Master's student in Computer Science at the Univeristy of Djelfa, Algeria. his research
interests include software engineering, SPL, and project management systems.

2. Walid Kherchofi is a Master's student in Computer Science at the Univeristy of Djelfa, Algeria. his research
focuses on software development methodologies, microservices, and open-source software.

開源應用向軟件產品線的遷移

Said Naceri1，Walid Kherchofi1

1計算機科學系，傑爾夫大學，阿爾及利亞，17000

摘要：軟件復用是現代軟件工程的基石，有助於提升開發效率與系統適應性。軟件產品線

（SPL）通過在特定領域利用可復用資產，為創建軟件家族提供了系統性方法。本文介紹了一種

將開源項目管理應用借助Mobioos Forge平臺遷移到軟件產品線的方法。同時，我們依據阿爾及

利亞近期監管框架（Loi organique18-15），為該應用拓展了一個基於微服務的模塊。結果顯示，

其可復用性與靈活性得到提升，這得益於特性建模、變體生成以及模塊化架構。此項工作凸顯了

軟件產品線在實際應用中的實用價值。

關鍵詞：項目管理；可變性；軟件產品線；Mobioos Forge

1. Said Naceri，阿爾及利亞傑爾夫大學計算機科學專業的碩士研究生，他的研究興趣包括軟件工

程、軟件產品線（SPL）和項目管理系統；

2. Walid Kherchofi，阿爾及利亞傑爾夫大學計算機科學專業的碩士研究生，他的研究重點在於

軟件開發方法論、微服務和開源軟件。


	Migration of an Open Source Application to Softwar
	1Introduction 
	2Methodology
	2.1Domain Analysis and Feature Modeling
	2.2Feature-to-Code Mapping
	2.3Variant Configuration and Generation
	2.4Validation and Refinement

	3Experiments
	3.1Experimental Setup
	3.2Feature Mapping Metrics
	3.3Variant Configurations and Generation

	4Conclusion
	Acknowledgement
	Conflicts of Interest 
	References
	Biographies

